1
|
Alexandre D, Fernandes AR, Baptista PV, Cruz C. Evaluation of miR-155 silencing using a molecular beacon in human lung adenocarcinoma cell line. Talanta 2024; 274:126052. [PMID: 38608633 DOI: 10.1016/j.talanta.2024.126052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Lung cancer (LC) is a leading cause of global cancer-related deaths, highlighting the development of innovative methods for biomarker detection improving the early diagnostics. microRNAs (miRs) alterations are known to be involved in the initiation and progression of human cancers and can act as biomarkers for diagnostics and treatment. Herein, we develop the application of molecular beacon (MB) technology to monitor miR-155-3p expression in human lung adenocarcinoma A549 cells without complementary DNA synthesis, amplification, or expensive reagents. Furthermore, we produced gold nanoparticles (AuNPs) for delivering antisense oligonucleotides into A549 cells to reduce miR-155-3p expression, which was subsequently detectable using the MB. The MB was designed and structural characterized by Förster Resonance Energy Transfer (FRET)-melting, Circular Dichroism (CD), Nuclear magnetic resonance (NMR), and fluorometric experiments, and then the hybridization conditions were optimized for an in vitro approach involving the detection of miR-155-3p in total RNA extracted from A549 cell line. The expression profile of miR-155-3p was obtained by RT-qPCR. The results demonstrated that MB was properly designed and showed efficacy in targeting miR-155-3p. Furthermore, a limit of detection down to nanomolar concentration was achieved and the specificity of the biosensor was proved. Moreover, the self-assembly of ASOs with AuNPs exhibited exceptional target specificity, effectively silencing miR-155-3p. Notably, compared to lipid-based transfection agent, AuNPs displayed superior silencing efficiency. We highlighted the ability of MB to detect changes in the target gene expression after gene silencing. Overall, this innovative approach represents a promising tool for detecting various biomarkers at the same time, with potential applications in clinical settings.
Collapse
Affiliation(s)
- Daniela Alexandre
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; i4HB, Associate Laboratory - Institute for Health and Bioeconomy, FCT-NOVA, Portugal
| | - Pedro V Baptista
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; i4HB, Associate Laboratory - Institute for Health and Bioeconomy, FCT-NOVA, Portugal.
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; Departamento de Química, Faculdade de Ciências da Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
| |
Collapse
|
2
|
A Novel Helper qPCR Assay for the Detection of miRNA Using Target/Helper Template for Primer Formation. Int J Anal Chem 2022; 2022:6918054. [PMID: 35469146 PMCID: PMC9034933 DOI: 10.1155/2022/6918054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
A novel, simple, and sensitive quantitative polymerase chain reaction (qPCR) technology, which is termed as helper qPCR, was established to detect miRNA. In this assay, the target miRNA sequence was introduced as helper template for a reaction switch preforming two-step real-time qPCR strategy. Firstly, the reverse primer was reverse transcribed to form “mediator primer” after binding to the target miRNA. Then, the mediator primer was further extended to form “active template” with annealing to the mediator template. In the end, the active template was amplified and detected by the qPCR reaction system with the help of reverse and forward primers. The SYBR Green dye was used for fluorescence quantification, which is quicker and cheaper than the fluorescent probes, as the detection limit of this assay was 1 pM. This helper qPCR system can be used for different miRNAs detection by redesigning reverse primer for target, indicating this strategy could afford good performance in detecting multiple miRNAs and has a promising application prospect.
Collapse
|
3
|
Alexandre D, Teixeira B, Rico A, Valente S, Craveiro A, Baptista PV, Cruz C. Molecular Beacon for Detection miRNA-21 as a Biomarker of Lung Cancer. Int J Mol Sci 2022; 23:ijms23063330. [PMID: 35328750 PMCID: PMC8955680 DOI: 10.3390/ijms23063330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/25/2022] Open
Abstract
Lung cancer (LC) is the leading cause of cancer-related death worldwide. Although the diagnosis and treatment of non-small cell lung cancer (NSCLC), which accounts for approximately 80% of LC cases, have greatly improved in the past decade, there is still an urgent need to find more sensitive and specific screening methods. Recently, new molecular biomarkers are emerging as potential non-invasive diagnostic agents to screen NSCLC, including multiple microRNAs (miRNAs) that show an unusual expression profile. Moreover, peripheral blood mononuclear cells’ (PBMCs) miRNA profile could be linked with NSCLC and used for diagnosis. We developed a molecular beacon (MB)-based miRNA detection strategy for NSCLC. Following PBMCs isolation and screening of the expression profile of a panel of miRNA by RT-qPCR, we designed a MB targeting of up-regulated miR-21-5p. This MB 21-5p was characterized by FRET-melting, CD, NMR and native PAGE, allowing the optimization of an in-situ approach involving miR-21-5p detection in PBMCs via MB. Data show the developed MB approach potential for miR-21-5p detection in PBMCs from clinical samples towards NSCLC.
Collapse
Affiliation(s)
- Daniela Alexandre
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. 5 Henrique, 6200-506 Covilhã, Portugal; (D.A.); (B.T.); (A.R.)
| | - Bernardo Teixeira
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. 5 Henrique, 6200-506 Covilhã, Portugal; (D.A.); (B.T.); (A.R.)
| | - André Rico
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. 5 Henrique, 6200-506 Covilhã, Portugal; (D.A.); (B.T.); (A.R.)
| | - Salete Valente
- Serviço de Pneumologia do Centro Hospitalar Universitário Cova da Beira (CHUCB), 6200-506 Covilhã, Portugal; (S.V.); (A.C.)
| | - Ana Craveiro
- Serviço de Pneumologia do Centro Hospitalar Universitário Cova da Beira (CHUCB), 6200-506 Covilhã, Portugal; (S.V.); (A.C.)
| | - Pedro V. Baptista
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
- i4HB, Associate Laboratory–Institute for Health and Bioeconomy, FCT-NOVA, 2829-516 Caparica, Portugal
| | - Carla Cruz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. 5 Henrique, 6200-506 Covilhã, Portugal; (D.A.); (B.T.); (A.R.)
- Correspondence:
| |
Collapse
|
4
|
Niu L, Yang W, Duan L, Wang X, Li Y, Xu C, Liu C, Zhang Y, Zhou W, Liu J, Zhao Q, Hong L, Fan D. Biological Implications and Clinical Potential of Metastasis-Related miRNA in Colorectal Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:42-54. [PMID: 33335791 PMCID: PMC7723777 DOI: 10.1016/j.omtn.2020.10.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC), ranking as the third commonest cancer, leads to extremely high rates of mortality. Metastasis is the major cause of poor outcome in CRC. When metastasis occurs, 5-year survival rates of patients decrease sharply, and strategies to enhance a patient's lifetime seem limited. MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs that are significantly involved in manipulation of CRC malignant phenotypes, including proliferation, invasion, and metastasis. To date, accumulating studies have revealed the mechanisms and functions of certain miRNAs in CRC metastasis. However, there is no systematic discussion about the biological implications and clinical potential (diagnostic role, prognostic role, and targeted therapy potential) of metastasis-related miRNAs in CRC. This review mainly summarizes the recent advances of miRNA-mediated metastasis in CRC. We also discuss the clinical values of metastasis-related miRNAs as potential biomarkers or therapeutic targets in CRC. Moreover, we envisage the future orientation and challenges in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Liaoran Niu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Wanli Yang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Lili Duan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Yiding Li
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Chengchao Xu
- 94719 Military Hospital, Ji’an 343700, Jiangxi Province, China
| | - Chao Liu
- School of Basic Medical Sciences, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| |
Collapse
|
5
|
Corrigendum #2 to "Quantitative Detection of miRNA-21 Expression in Tumor Cells and Tissues Based on Molecular Beacon". Int J Anal Chem 2021; 2021:8406935. [PMID: 33510790 PMCID: PMC7822685 DOI: 10.1155/2021/8406935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 11/18/2022] Open
|
6
|
Bidar N, Oroojalian F, Baradaran B, Eyvazi S, Amini M, Jebelli A, Hosseini SS, Pashazadeh-Panahi P, Mokhtarzadeh A, de la Guardia M. Monitoring of microRNA using molecular beacons approaches: Recent advances. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Corrigendum to "Quantitative Detection of miRNA-21 Expression in Tumor Cells and Tissues Based on Molecular Beacon". Int J Anal Chem 2020; 2020:1515794. [PMID: 32411247 PMCID: PMC7212319 DOI: 10.1155/2020/1515794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 08/29/2019] [Indexed: 01/30/2023] Open
|
8
|
Catalytic hairpin assembly-assisted lateral flow assay for visual determination of microRNA-21 using gold nanoparticles. Mikrochim Acta 2019; 186:661. [DOI: 10.1007/s00604-019-3743-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/10/2019] [Indexed: 01/25/2023]
|
9
|
Chen B, Xia Z, Deng YN, Yang Y, Zhang P, Zhu H, Xu N, Liang S. Emerging microRNA biomarkers for colorectal cancer diagnosis and prognosis. Open Biol 2019; 9:180212. [PMID: 30958116 PMCID: PMC6367136 DOI: 10.1098/rsob.180212] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/02/2019] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) are one abundant class of small, endogenous non-coding RNAs, which regulate various biological processes by inhibiting expression of target genes. miRNAs have important functional roles in carcinogenesis and development of colorectal cancer (CRC), and emerging evidence has indicated the feasibility of miRNAs as robust cancer biomarkers. This review summarizes the progress in miRNA-related research, including study of its oncogene or tumour-suppressor roles and the advantages of miRNA biomarkers for CRC diagnosis, treatment and recurrence prediction. Along with analytical technique improvements in miRNA research, use of the emerging extracellular miRNAs is feasible for CRC diagnosis and prognosis.
Collapse
Affiliation(s)
- Bing Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No. 17, 3rd Section of People's South Road, Chengdu 610041, People's Republic of China
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou 450052, People's Republic of China
| | - Zijing Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No. 17, 3rd Section of People's South Road, Chengdu 610041, People's Republic of China
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Ya-Nan Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No. 17, 3rd Section of People's South Road, Chengdu 610041, People's Republic of China
| | - Yanfang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No. 17, 3rd Section of People's South Road, Chengdu 610041, People's Republic of China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100034, People's Republic of China
| | - Ningzhi Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No. 17, 3rd Section of People's South Road, Chengdu 610041, People's Republic of China
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100034, People's Republic of China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No. 17, 3rd Section of People's South Road, Chengdu 610041, People's Republic of China
| |
Collapse
|