1
|
Xu C, Zhang R, Duan M, Zhou Y, Bao J, Lu H, Wang J, Hu M, Hu Z, Zhou F, Zhu W. A polygenic stacking classifier revealed the complicated platelet transcriptomic landscape of adult immune thrombocytopenia. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:477-487. [PMID: 35505964 PMCID: PMC9046129 DOI: 10.1016/j.omtn.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/01/2022] [Indexed: 01/19/2023]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease with the typical symptom of a low platelet count in blood. ITP demonstrated age and sex biases in both occurrences and prognosis, and adult ITP was mainly induced by the living environments. The current diagnosis guideline lacks the integration of molecular heterogenicity. This study recruited the largest cohort of platelet transcriptome samples. A comprehensive procedure of feature selection, feature engineering, and stacking classification was carried out to detect the ITP biomarkers using RNA sequencing (RNA-seq) transcriptomes. The 40 detected biomarkers were loaded to train the final ITP detection model, with an overall accuracy 0.974. The biomarkers suggested that ITP onset may be associated with various transcribed components, including protein-coding genes, long intergenic non-coding RNA (lincRNA) genes, and pseudogenes with apparent transcriptions. The delivered ITP detection model may also be utilized as a complementary ITP diagnosis tool. The code and the example dataset is freely available on http://www.healthinformaticslab.org/supp/resources.php
Collapse
Affiliation(s)
- Chengfeng Xu
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Ruochi Zhang
- College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| | - Meiyu Duan
- College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| | - Yongming Zhou
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Jizhang Bao
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Hao Lu
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Jie Wang
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Minghui Hu
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Zhaoyang Hu
- Fun-Med Pharmaceutical Technology (Shanghai) Co., Ltd., RM. A310, 115 Xinjunhuan Road, Minhang District, Shanghai 201100, China
- Corresponding author Zhaoyang Hu, PhD, Fengneng Pharmaceutical Technology (Shanghai) Co., Ltd., RM. A310, 115 Xinjunhuan Road, Minhang District, Shanghai 201100, China.
| | - Fengfeng Zhou
- College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
- Corresponding author Fengfeng Zhou, PhD, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China.
| | - Wenwei Zhu
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai 200437, China
- Corresponding author Wenwei Zhu, PhD, Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai 200437, China.
| |
Collapse
|
2
|
Lee Y, Veerubhotla K, Jeong MH, Lee CH. Deep Learning in Personalization of Cardiovascular Stents. J Cardiovasc Pharmacol Ther 2020; 25:110-120. [DOI: 10.1177/1074248419878405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Deep learning (DL) application has demonstrated its enormous potential in accomplishing biomedical tasks, such as vessel segmentation, brain visualization, and speech recognition. This review article has mainly covered recent advances in the principles of DL algorithms, existing DL software, and designing strategies of DL models. Latest progresses in cardiovascular devices, especially DL-based cardiovascular stent used for angioplasty, differential and advanced diagnostic means, and the treatment outcomes involved with coronary artery disease (CAD), are discussed. Also presented is DL-based discovery of new materials and future medical technologies that will facilitate the development of tailored and personalized treatment strategies by identifying and forecasting individual impending risks of cardiovascular diseases.
Collapse
Affiliation(s)
- Yugyung Lee
- School of Computing and Engineering, University of Missouri-Kansas City, MO, USA
| | - Krishna Veerubhotla
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, MO, USA
| | - Myung Ho Jeong
- Department of Cardiovascular Medicine of Chonnam National University, Gwang-Ju, South Korea
| | - Chi H. Lee
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, MO, USA
| |
Collapse
|
3
|
Hu X, Ding D, Chu D. Multiple Hidden Markov Model for Pathological Vessel Segmentation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9868215. [PMID: 30643827 PMCID: PMC6311274 DOI: 10.1155/2018/9868215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/12/2018] [Accepted: 11/28/2018] [Indexed: 11/27/2022]
Abstract
One of the obstacles that prevent the accurate delineation of vessel boundaries is the presence of pathologies, which results in obscure boundaries and vessel-like structures. Targeting this limitation, we present a novel segmentation method based on multiple Hidden Markov Models. This method works with a vessel axis + cross-section model, which constrains the classifier around the vessel. The vessel axis constraint gives our method the potential to be both physiologically accurate and computationally effective. Focusing on pathological vessels, we reap the benefits of the redundant information embedded in multiple vessel-specific features and the good statistical properties coming with Hidden Markov Model, to cover the widest possible spectrum of complex situations. The performance of our method is evaluated on synthetic complex-structured datasets, where we achieve a 91% high overlap ratio. We also validate the proposed method on a real challenging case, segmentation of pathological abdominal arteries. The performance of our method is promising, since our method yields better results than two state-of-the-art methods on both synthetic datasets and real clinical datasets.
Collapse
Affiliation(s)
- Xin Hu
- School of Computer Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Deqiong Ding
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Dianhui Chu
- School of Computer Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| |
Collapse
|