1
|
Dai Y, Bi M, Jiao Q, Du X, Yan C, Jiang H. Astrocyte-derived apolipoprotein D is required for neuronal survival in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:143. [PMID: 39095480 PMCID: PMC11297325 DOI: 10.1038/s41531-024-00753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
Apolipoprotein D (ApoD), a lipocalin transporter of small hydrophobic molecules, plays an essential role in several neurodegenerative diseases. It was reported that increased immunostaining for ApoD of glial cells surrounding dopaminergic (DAergic) neurons was observed in the brains of Parkinson's disease (PD) patients. Although preliminary findings supported the role of ApoD in neuroprotection, its derivation and effects on the degeneration of nigral DAergic neurons are largely unknown. In the present study, we observed that ApoD levels released from astrocytes were increased in PD models both in vivo and in vitro. When co-cultured with astrocytes, due to the increased release of astrocytic ApoD, the survival rate of primary cultured ventral midbrain (VM) neurons was significantly increased with 1-methyl-4-phenylpyridillium ion (MPP+) treatment. Increased levels of TAp73 and its phosphorylation at Tyr99 in astrocytes were required for the increased ApoD levels and its release. Conditional knockdown of TAp73 in the nigral astrocytes in vivo could aggravate the neurodegeneration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated PD mice. Our findings reported that astrocyte-derived ApoD was essential for DAergic neuronal survival in PD models, might provide new therapeutic targets for PD.
Collapse
Affiliation(s)
- Yingying Dai
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
2
|
Takaya K, Asou T, Kishi K. Identification of Apolipoprotein D as a Dermal Fibroblast Marker of Human Aging for Development of Skin Rejuvenation Therapy. Rejuvenation Res 2023; 26:42-50. [PMID: 36571249 DOI: 10.1089/rej.2022.0056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The current understanding of skin aging is that senescent fibroblasts accumulate within the dermis and subcutaneous fat to cause abnormal tissue remodeling and extracellular matrix dysfunction, triggering a senescence-associated secretory phenotype (SASP). A novel therapeutic approach to prevent skin aging is to specifically eliminate senescent dermal fibroblasts; this requires the identification of specific protein markers for senescent cells. Apolipoprotein D (ApoD) is involved in lipid metabolism and antioxidant responses and is abundantly expressed in tissues affected by age-related diseases such as Alzheimer's disease and atherosclerosis. However, its behavior and role in skin aging remain unclear. In this study, we examined whether ApoD functions as a marker of aging using human dermal fibroblast aging models. In cellular senescence models induced through replicative aging and ionizing radiation exposure, ApoD expression was upregulated at the gene and protein levels and correlated with senescence-associated β-galactosidase activity and the decreased uptake of the proliferation marker bromodeoxyuridine, which was concomitant with the upregulation of SASP genes. Furthermore, ApoD-positive cells were found to be more abundant in the aging human dermis using fluorescence flow cytometry. These results suggest that ApoD is a potential clinical marker for identifying aging dermal fibroblasts.
Collapse
Affiliation(s)
- Kento Takaya
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Toru Asou
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Franzke B, Bileck A, Unterberger S, Aschauer R, Zöhrer PA, Draxler A, Strasser EM, Wessner B, Gerner C, Wagner KH. The plasma proteome is favorably modified by a high protein diet but not by additional resistance training in older adults: A 17-week randomized controlled trial. Front Nutr 2022; 9:925450. [PMID: 35990326 PMCID: PMC9389340 DOI: 10.3389/fnut.2022.925450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe age-related loss of muscle mass significantly contributes to the development of chronic diseases, loss of mobility and dependency on others, yet could be improved by an optimized lifestyle.ObjectiveThe goal of this randomized controlled trial was to compare the influence of a habitual diet (CON) with either a diet containing the recommended protein intake (RP) or a high protein intake (HP), both with and without strength training, on the plasma proteome in older adults.MethodsOne hundred and thirty-six women and men (65–85 years) were randomly assigned to three intervention groups. CON continued their habitual diet; participants of the HP and RP group consumed either high protein or standard foods. After 6 weeks of dietary intervention, HP and RP groups additionally started a strength training intervention twice per week for 8 weeks. Twenty-four hours dietary recalls were performed every 7–10 days. Body composition was assessed and blood taken. Plasma proteomics were assessed with LC-MS.ResultsParticipants of the HP group doubled their baseline protein intake from 0.80 ± 0.31 to 1.63 ± 0.36 g/kg BW/d; RP increased protein intake from 0.89 ± 0.28 to 1.06 ± 0.26 g/kg BW/d. The CON group kept the protein intake stable throughout the study. Combined exercise and HP initiated notable changes, resulting in a reduction in bodyfat and increased muscle mass. Proteomics analyses revealed 14 significantly affected proteins by HP diet, regulating innate immune system, lipid transport and blood coagulation, yet the additional strength training did not elicit further changes.ConclusionsCombined HP and resistance exercise in healthy older adults seem to induce favorable changes in the body composition. Changes in the plasma proteome due to the high protein diet point to a beneficial impact for the innate immune system, lipid transport and blood coagulation system, all of which are involved in chronic disease development.Clinical trial registrationThe study was registered at ClinicalTrials.gov (NCT04023513).
Collapse
Affiliation(s)
- Bernhard Franzke
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- *Correspondence: Bernhard Franzke
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Sandra Unterberger
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
- Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Rudolf Aschauer
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
- Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Patrick A. Zöhrer
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Agnes Draxler
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Eva-Maria Strasser
- Karl Landsteiner Institute for Remobilization and Functional Health/Institute for Physical Medicine and Rehabilitation, Kaiser Franz Joseph Hospital, Social Medical Center South, Vienna, Austria
| | - Barbara Wessner
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
- Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Karl-Heinz Wagner
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Huang J, Liu L, Qin L, Huang H, Li X. Single-Cell Transcriptomics Uncovers Cellular Heterogeneity, Mechanisms, and Therapeutic Targets for Parkinson’s Disease. Front Genet 2022; 13:686739. [PMID: 35601482 PMCID: PMC9114673 DOI: 10.3389/fgene.2022.686739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: This study aimed to exploit cellular heterogeneity for revealing mechanisms and identifying therapeutic targets for Parkinson’s disease (PD) via single-cell transcriptomics. Methods: Single-cell RNA sequencing (scRNA-seq) data on midbrain specimens from PD and healthy individuals were obtained from the GSE157783 dataset. After quality control and preprocessing, the principal component analysis (PCA) was presented. Cells were clustered with the Seurat package. Cell clusters were labeled by matching marker genes and annotations of the brain in the CellMarker database. The ligand–receptor networks were established, and the core cell cluster was selected. Biological functions of differentially expressed genes in core cell clusters were analyzed. Upregulated marker genes were identified between PD and healthy individuals, which were measured in 18 PD patients’ and 18 healthy individuals’ blood specimens through RT-qPCR and Western blotting. Results: The first nine PCs were determined, which can better represent the overall change. Five cell clusters were identified, including oligodendrocytes, astrocytes, neurons, microglial cells, and endothelial cells. Among them, endothelial cells were the core cell cluster in the ligand–receptor network. Marker genes of endothelial cells possessed various biological functions. Among them, five marker genes (ANGPT2, APOD, HSP90AA1, HSPA1A, and PDE1C) were upregulated in PD patients’ than in healthy individuals’ endothelial cells, which were confirmed in PD patients’ than in healthy individuals’ blood specimens. Conclusion: Our findings revealed that the cellular heterogeneity of PD and endothelial cells could play a major role in cell-to-cell communications. Five upregulated marker genes of endothelial cells could be underlying therapeutic targets of PD, which deserve more in-depth clinical research.
Collapse
Affiliation(s)
- Jianjun Huang
- Department of Neurology, Youjiang Medical University for Nationalities, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- *Correspondence: Li Liu, ; Jianjun Huang,
| | - Li Liu
- Department of Cardiology, Youjiang Medical University for Nationalities, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- *Correspondence: Li Liu, ; Jianjun Huang,
| | - Lingling Qin
- Department of Medical Quality Management, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Hehua Huang
- Department of Anatomy, Youjiang Medical University for Nationalities, Baise, China
| | - Xue Li
- Department of Electrophysiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
5
|
Berdowska I, Matusiewicz M, Krzystek-Korpacka M. HDL Accessory Proteins in Parkinson’s Disease—Focusing on Clusterin (Apolipoprotein J) in Regard to Its Involvement in Pathology and Diagnostics—A Review. Antioxidants (Basel) 2022; 11:antiox11030524. [PMID: 35326174 PMCID: PMC8944556 DOI: 10.3390/antiox11030524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Parkinson’s disease (PD)—a neurodegenerative disorder (NDD) characterized by progressive destruction of dopaminergic neurons within the substantia nigra of the brain—is associated with the formation of Lewy bodies containing mainly α-synuclein. HDL-related proteins such as paraoxonase 1 and apolipoproteins A1, E, D, and J are implicated in NDDs, including PD. Apolipoprotein J (ApoJ, clusterin) is a ubiquitous, multifunctional protein; besides its engagement in lipid transport, it modulates a variety of other processes such as immune system functionality and cellular death signaling. Furthermore, being an extracellular chaperone, ApoJ interacts with proteins associated with NDD pathogenesis (amyloid β, tau, and α-synuclein), thus modulating their properties. In this review, the association of clusterin with PD is delineated, with respect to its putative involvement in the pathological mechanism and its application in PD prognosis/diagnosis.
Collapse
Affiliation(s)
- Izabela Berdowska
- Correspondence: (I.B.); (M.M.); Tel.: +48-71-784-13-92 (I.B.); +48-71-784-13-70 (M.M.)
| | | | | |
Collapse
|
6
|
Sanchez D, Ganfornina MD. The Lipocalin Apolipoprotein D Functional Portrait: A Systematic Review. Front Physiol 2021; 12:738991. [PMID: 34690812 PMCID: PMC8530192 DOI: 10.3389/fphys.2021.738991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among other features, regulation of its expression in a wide variety of disease conditions in humans, as apparently unrelated as neurodegeneration or breast cancer, have called for attention on this gene. Also, its presence in different tissues, from blood to brain, and different subcellular locations, from HDL lipoparticles to the interior of lysosomes or the surface of extracellular vesicles, poses an interesting challenge in deciphering its physiological function: Is ApoD a moonlighting protein, serving different roles in different cellular compartments, tissues, or organisms? Or does it have a unique biochemical mechanism of action that accounts for such apparently diverse roles in different physiological situations? To answer these questions, we have performed a systematic review of all primary publications where ApoD properties have been investigated in chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined with an antioxidant activity performed at the rim of the pocket are properties sufficient to explain ApoD association with different lipid-based structures, where its physiological function is better described as lipid-management than by long-range lipid-transport. Controlling the redox state of these lipid structures in particular subcellular locations or extracellular structures, ApoD is able to modulate an enormous array of apparently diverse processes in the organism, both in health and disease. The new picture emerging from these data should help to put the physiological role of ApoD in new contexts and to inspire well-focused future research.
Collapse
Affiliation(s)
- Diego Sanchez
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| | - Maria D Ganfornina
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| |
Collapse
|
7
|
Martínez-Pinilla E, Rubio-Sardón N, Peláez R, García-Álvarez E, del Valle E, Tolivia J, Larráyoz IM, Navarro A. Neuroprotective Effect of Apolipoprotein D in Cuprizone-Induced Cell Line Models: A Potential Therapeutic Approach for Multiple Sclerosis and Demyelinating Diseases. Int J Mol Sci 2021; 22:1260. [PMID: 33514021 PMCID: PMC7866080 DOI: 10.3390/ijms22031260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Apolipoprotein D (Apo D) overexpression is a general finding across neurodegenerative conditions so the role of this apolipoprotein in various neuropathologies such as multiple sclerosis (MS) has aroused a great interest in last years. However, its mode of action, as a promising compound for the development of neuroprotective drugs, is unknown. The aim of this work was to address the potential of Apo D to prevent the action of cuprizone (CPZ), a toxin widely used for developing MS models, in oligodendroglial and neuroblastoma cell lines. On one hand, immunocytochemical quantifications and gene expression measures showed that CPZ compromised neural mitochondrial metabolism but did not induce the expression of Apo D, except in extremely high doses in neurons. On the other hand, assays of neuroprotection demonstrated that antipsychotic drug, clozapine, induced an increase in Apo D synthesis only in the presence of CPZ, at the same time that prevented the loss of viability caused by the toxin. The effect of the exogenous addition of human Apo D, once internalized, was also able to directly revert the loss of cell viability caused by treatment with CPZ by a reactive oxygen species (ROS)-independent mechanism of action. Taken together, our results suggest that increasing Apo D levels, in an endo- or exogenous way, moderately prevents the neurotoxic effect of CPZ in a cell model that seems to replicate some features of MS which would open new avenues in the development of interventions to afford MS-related neuroprotection.
Collapse
Affiliation(s)
- Eva Martínez-Pinilla
- Department of Morphology and Cell Biology, University of Oviedo, 33003 Oviedo, Spain; (N.R.-S.); (E.G.-Á.); (E.d.V.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Núria Rubio-Sardón
- Department of Morphology and Cell Biology, University of Oviedo, 33003 Oviedo, Spain; (N.R.-S.); (E.G.-Á.); (E.d.V.); (A.N.)
| | - Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (R.P.); (I.M.L.)
| | - Enrique García-Álvarez
- Department of Morphology and Cell Biology, University of Oviedo, 33003 Oviedo, Spain; (N.R.-S.); (E.G.-Á.); (E.d.V.); (A.N.)
| | - Eva del Valle
- Department of Morphology and Cell Biology, University of Oviedo, 33003 Oviedo, Spain; (N.R.-S.); (E.G.-Á.); (E.d.V.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jorge Tolivia
- Department of Morphology and Cell Biology, University of Oviedo, 33003 Oviedo, Spain; (N.R.-S.); (E.G.-Á.); (E.d.V.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ignacio M. Larráyoz
- Biomarkers and Molecular Signaling Group, Neurodegeneration Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (R.P.); (I.M.L.)
| | - Ana Navarro
- Department of Morphology and Cell Biology, University of Oviedo, 33003 Oviedo, Spain; (N.R.-S.); (E.G.-Á.); (E.d.V.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
8
|
Paraoxonase Role in Human Neurodegenerative Diseases. Antioxidants (Basel) 2020; 10:antiox10010011. [PMID: 33374313 PMCID: PMC7824310 DOI: 10.3390/antiox10010011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
The human body has biological redox systems capable of preventing or mitigating the damage caused by increased oxidative stress throughout life. One of them are the paraoxonase (PON) enzymes. The PONs genetic cluster is made up of three members (PON1, PON2, PON3) that share a structural homology, located adjacent to chromosome seven. The most studied enzyme is PON1, which is associated with high density lipoprotein (HDL), having paraoxonase, arylesterase and lactonase activities. Due to these characteristics, the enzyme PON1 has been associated with the development of neurodegenerative diseases. Here we update the knowledge about the association of PON enzymes and their polymorphisms and the development of multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Parkinson's disease (PD).
Collapse
|
9
|
Celecoxib promotes survival and upregulates the expression of neuroprotective marker genes in two different in vitro models of Parkinson's disease. Neuropharmacology 2020; 194:108378. [PMID: 33160981 DOI: 10.1016/j.neuropharm.2020.108378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder after Alzheimer's disease. Increasing evidence highlights the role of age-related chronic inflammation, oxidative stress and mitochondrial dysfunction in the pathogenesis of PD. A combination of these factors impairs the crosstalk between mitochondria and lysosomes, resulting in compromised cell homeostasis. Apolipoprotein D (APOD), an ancient and highly conserved anti-inflammatory and antioxidant lipocalin, and the transcription factor EB (TFEB), a master regulator of mitophagy, autophagy and lysosomal biogenesis, play key roles in these processes. Both APOD and TFEB have attracted attention as therapeutic targets for PD. The aim of this study was to investigate if the selective cyclooxygenase-2 inhibitor celecoxib (CXB) exerts a direct neuroprotective effect in 6-hydroxydopamine (6-OHDA) and paraquat (PQ) PD models. We found that CXB rescued SH-SY5Y cells challenged by 6-OHDA- and PQ-induced toxicity. Furthermore, treatment with CXB led to a marked and sustained upregulation of APOD and the two microphthalmia transcription factors TFEB and MITF. In sum, this study highlights the clinically approved drug CXB as a promising neuroprotective therapeutic tool in PD research that has the potential to increase the survival rate of dopaminergic neurons that are still alive at the time of diagnosis.
Collapse
|
10
|
Rassart E, Desmarais F, Najyb O, Bergeron KF, Mounier C. Apolipoprotein D. Gene 2020; 756:144874. [PMID: 32554047 DOI: 10.1016/j.gene.2020.144874] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/28/2022]
Abstract
ApoD is a 25 to 30 kDa glycosylated protein, member of the lipocalin superfamily. As a transporter of several small hydrophobic molecules, its known biological functions are mostly associated to lipid metabolism and neuroprotection. ApoD is a multi-ligand, multi-function protein that is involved lipid trafficking, food intake, inflammation, antioxidative response and development and in different types of cancers. An important aspect of ApoD's role in lipid metabolism appears to involve the transport of arachidonic acid, and the modulation of eicosanoid production and delivery in metabolic tissues. ApoD expression in metabolic tissues has been associated positively and negatively with insulin sensitivity and glucose homeostasis in a tissue dependent manner. ApoD levels rise considerably in association with aging and neuropathologies such as Alzheimer's disease, stroke, meningoencephalitis, moto-neuron disease, multiple sclerosis, schizophrenia and Parkinson's disease. ApoD is also modulated in several animal models of nervous system injury/pathology.
Collapse
Affiliation(s)
- Eric Rassart
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada.
| | - Frederik Desmarais
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada; Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Ouafa Najyb
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Karl-F Bergeron
- Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Catherine Mounier
- Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
11
|
Studies of ApoD -/- and ApoD -/-ApoE -/- mice uncover the APOD significance for retinal metabolism, function, and status of chorioretinal blood vessels. Cell Mol Life Sci 2020; 78:963-983. [PMID: 32440710 DOI: 10.1007/s00018-020-03546-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/15/2020] [Accepted: 05/07/2020] [Indexed: 12/26/2022]
Abstract
Apolipoprotein D (APOD) is an atypical apolipoprotein with unknown significance for retinal structure and function. Conversely, apolipoprotein E (APOE) is a typical apolipoprotein with established roles in retinal cholesterol transport. Herein, we immunolocalized APOD to the photoreceptor inner segments and conducted ophthalmic characterizations of ApoD-/- and ApoD-/-ApoE-/- mice. ApoD-/- mice had normal levels of retinal sterols but changes in the chorioretinal blood vessels and impaired retinal function. The whole-body glucose disposal was impaired in this genotype but the retinal glucose metabolism was unchanged. ApoD-/-ApoE-/- mice had altered sterol profile in the retina but apparently normal chorioretinal vasculature and function. The whole-body glucose disposal and retinal glucose utilization were enhanced in this genotype. OB-Rb, both leptin and APOD receptor, was found to be expressed in the photoreceptor inner segments and was at increased abundance in the ApoD-/- and ApoD-/-ApoE-/- retinas. Retinal levels of Glut4 and Cd36, the glucose transporter and scavenger receptor, respectively, were increased as well, thus linking APOD to retinal glucose and fatty acid metabolism and suggesting the APOD-OB-Rb-GLUT4/CD36 axis. In vivo isotopic labeling, transmission electron microscopy, and retinal proteomics provided additional insights into the mechanism underlying the retinal phenotypes of ApoD-/- and ApoD-/-ApoE-/- mice. Collectively, our data suggest that the APOD roles in the retina are context specific and could determine retinal glucose fluxes into different pathways. APOD and APOE do not play redundant, complementary or opposing roles in the retina, rather their interplay is more complex and reflects retinal responses elicited by lack of these apolipoproteins.
Collapse
|
12
|
Rotunno MS, Lane M, Zhang W, Wolf P, Oliva P, Viel C, Wills AM, Alcalay RN, Scherzer CR, Shihabuddin LS, Zhang K, Sardi SP. Cerebrospinal fluid proteomics implicates the granin family in Parkinson's disease. Sci Rep 2020; 10:2479. [PMID: 32051502 PMCID: PMC7015906 DOI: 10.1038/s41598-020-59414-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/24/2020] [Indexed: 12/25/2022] Open
Abstract
Parkinson's disease, the most common age-related movement disorder, is a progressive neurodegenerative disease with unclear etiology. Better understanding of the underlying disease mechanism(s) is an urgent need for the development of disease-modifying therapeutics. Limited studies have been performed in large patient cohorts to identify protein alterations in cerebrospinal fluid (CSF), a proximal site to pathology. We set out to identify disease-relevant protein changes in CSF to gain insights into the etiology of Parkinson's disease and potentially assist in disease biomarker identification. In this study, we used liquid chromatography-tandem mass spectrometry in data-independent acquisition (DIA) mode to identify Parkinson's-relevant biomarkers in cerebrospinal fluid. We quantified 341 protein groups in two independent cohorts (n = 196) and a longitudinal cohort (n = 105 samples, representing 40 patients) consisting of Parkinson's disease and healthy control samples from three different sources. A first cohort of 53 Parkinson's disease and 72 control samples was analyzed, identifying 53 proteins with significant changes (p < 0.05) in Parkinson's disease relative to healthy control. We established a biomarker signature and multiple protein ratios that differentiate Parkinson's disease from healthy controls and validated these results in an independent cohort. The second cohort included 28 Parkinson's disease and 43 control samples. Independent analysis of these samples identified 41 proteins with significant changes. Evaluation of the overlapping changes between the two cohorts identified 13 proteins with consistent and significant changes (p < 0.05). Importantly, we found the extended granin family proteins as reduced in disease, suggesting a potential common mechanism for the biological reduction in monoamine neurotransmission in Parkinson's patients. Our study identifies several novel protein changes in Parkinson's disease cerebrospinal fluid that may be exploited for understanding etiology of disease and for biomarker development.
Collapse
Affiliation(s)
- Melissa S Rotunno
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Inc., Framingham, MA, 01701, USA.,Biomarkers and Bioanalytics, Translational Sciences, Sanofi, Inc., Framingham, MA, 01701, USA
| | - Monica Lane
- Biomarkers and Bioanalytics, Translational Sciences, Sanofi, Inc., Framingham, MA, 01701, USA
| | - Wenfei Zhang
- Translational Medicine, Sanofi, Inc., Framingham, MA, 01701, USA
| | - Pavlina Wolf
- Biomarkers and Bioanalytics, Translational Sciences, Sanofi, Inc., Framingham, MA, 01701, USA.,Editas Medicine, Cambridge, MA, 02141, USA
| | - Petra Oliva
- Biomarkers and Bioanalytics, Translational Sciences, Sanofi, Inc., Framingham, MA, 01701, USA.,ARCHIMED Life Sciences GmbH, Leberstraße 20/2, 1110, Vienna, Austria
| | - Catherine Viel
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Inc., Framingham, MA, 01701, USA
| | - Anne-Marie Wills
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University, New York, NY, 10032-3784, USA
| | - Clemens R Scherzer
- Precision Neurology Program, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.,APDA Center for Advance Parkinson Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA
| | - Lamya S Shihabuddin
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Inc., Framingham, MA, 01701, USA
| | - Kate Zhang
- Biomarkers and Bioanalytics, Translational Sciences, Sanofi, Inc., Framingham, MA, 01701, USA.,Editas Medicine, Cambridge, MA, 02141, USA
| | - S Pablo Sardi
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Inc., Framingham, MA, 01701, USA.
| |
Collapse
|
13
|
Comparative Proteome-Wide Analysis of Bone Marrow Microenvironment of β-Thalassemia/Hemoglobin E. Proteomes 2019; 7:proteomes7010008. [PMID: 30813444 PMCID: PMC6473223 DOI: 10.3390/proteomes7010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/17/2022] Open
Abstract
β-thalassemia/Hb E is a global health issue, which is characterized by a range of clinical symptoms from a mild and asymptomatic anemia to severe disorders that require transfusions from infancy. Pathological mechanisms of the disease involve the excess of unmatched alpha globin and iron overload, leading to ineffective erythropoiesis and ultimately to the premature death of erythroid precursors in bone marrow (BM) and peripheral organs. However, it is unclear as to how BM microenvironment factors contribute to the defective erythropoiesis in β-thalassemia/Hb E patients. Here, we employed mass spectrometry-based comparative proteomics to analyze BM plasma that was collected from six β-thalassemia/Hb E patients and four healthy donors. We identified that the differentially expressed proteins are enriched in secretory or exosome-associated proteins, many of which have putative functions in the oxidative stress response. Using Western blot assay, we confirmed that atypical lipoprotein, Apolipoprotein D (APOD), belonging to the Lipocalin transporter superfamily, was significantly decreased in BM plasma of the tested pediatric β-thalassemia/Hb E patients. Our results highlight that the disease condition of ineffective erythropoiesis and oxidative stress found in BM microenvironment of β-thalassemia/Hb E patients is associated with the impaired expression of APOD protein.
Collapse
|
14
|
Gu L, Xia C. Cluster expansion of apolipoprotein D (ApoD) genes in teleost fishes. BMC Evol Biol 2019; 19:9. [PMID: 30621595 PMCID: PMC6325677 DOI: 10.1186/s12862-018-1323-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/11/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene and genome duplication play important roles in the evolution of gene function. Compared to individual duplicated genes, gene clusters attract particular attention considering their frequent associations with innovation and adaptation. Here, we report for the first time the expansion of the apolipoprotein D (ApoD) ligand-transporter genes in a cluster manner specific to teleost fishes. RESULTS Based on comparative genomic and transcriptomic analyses, protein 3D structure comparison, positive selection detection and breakpoints detection, the single ApoD gene in the ancestor expanded into two clusters following a dynamic evolutionary pattern in teleost fishes. Orthologous genes show conserved expression patterns, whereas lineage-specific duplicated genes show tissue-specific expression patterns and even evolve new gene expression profiles. Positive selection occurred in branches before and after gene duplication, especially for lineage-specific duplicated genes. Cluster analyses based on protein 3D structure comparisons, especially comparisons of the four loops at the opening side, show gene duplication-segregating patterns. Duplicated ApoD genes are predicted to be associated with forkhead transcription factors and MAPK genes. ApoD clusters are located next to the breakpoints of genome rearrangements. CONCLUSIONS Here, we report the expansion of ApoD genes specific to teleost fishes in a cluster manner for the first time. Neofunctionalization and subfunctionalization were observed at both the protein and expression levels after duplication. Evidence from different aspects-i.e., abnormal expression-induced disease in humans, fish-specific expansion, predicted associations with forkhead transcription factors and MAPK genes, specific expression patterns in tissues related to sexual selection and adaptation, duplicated genes under positive selection and their location next to the breakpoints of genome rearrangements-suggests the potentially advantageous roles of ApoD genes in teleost fishes. The cluster expansion of ApoD genes specific to teleost fishes provides thus an ideal evo-devo model for studying gene duplication, cluster maintenance and new gene function emergence.
Collapse
Affiliation(s)
- Langyu Gu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Canwei Xia
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|