1
|
Okada K, Okawada M, Yoneta M, Kuwahara W, Unai K, Kawakami M, Tsuji T, Kaneko F. Cognitive effect of passively induced kinesthetic perception associated with virtual body augmentation modulates spinal reflex. J Neurophysiol 2025; 133:69-77. [PMID: 39531281 DOI: 10.1152/jn.00042.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/07/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
The virtual movement of an augmented body, perceived as part of oneself, forms the basis of kinesthetic perception induced by visual stimulation (KINVIS). KINVIS is a visually induced virtual kinesthetic perception that clinically suppresses spasticity. The present study hypothesized that central neural network activity during KINVIS affects subcortical neural circuits. The present study aimed to elucidate whether reciprocal and presynaptic inhibition occurs during KINVIS. Seventeen healthy participants were recruited (mean age: 27.9 ± 3.6 yr), and their soleus Hoffmann-reflexes (H-reflexes) were recorded by peripheral nerve stimulation while perceiving the dorsiflexion kinesthetic illusion in the right-side foot (seated in a comfortable chair). Two control conditions were set to observe the same foot video without the kinesthetic illusion while focusing on the static foot image. Unconditioned H-reflex and two types of conditioned H-reflexes were measured: Ia (reciprocal inhibition) and D1 (presynaptic inhibition). Reciprocal Ia and D1 inhibition of the soleus muscle was significantly enhanced during the kinesthetic illusion compared with the condition without kinesthetic illusion (a post hoc analysis using the Bonferroni test: Ia inhibition, P = 0.002; D1 inhibition, P = 0.049). This study indicates that kinesthetic illusion elicits an inhibitory effect on the monosynaptic reflex loop of Ia afferents, potentially inhibiting the hyperexcitability of the stretch reflex. These findings demonstrate that brain activity associated with visually induced kinesthetic illusions acts on spinal inhibition circuits. These insights may be valuable in clinical rehabilitation practice, specifically for the treatment of spasticity.NEW & NOTEWORTHY Neural effects in visual-induced kinesthetic illusion expand into the spinal reflex. Kinesthetic illusion inhibits the monosynaptic reflex in an antagonistic muscle via reciprocal and presynaptic inhibition. Visually induced kinesthetic illusion is a suitable treatment for spasticity in patients with stroke.
Collapse
Affiliation(s)
- Kohsuke Okada
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Saiseikai Higashi-Kanagawa Rehabilitation Hospital, Yokohama, Japan
- Department of Physical Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Megumi Okawada
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Masaki Yoneta
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Home Care, Social Welfare Cooperation Kitano-Aikoukai, Kitami, Japan
| | - Wataru Kuwahara
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Kei Unai
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Saiseikai Higashi-Kanagawa Rehabilitation Hospital, Yokohama, Japan
- Hatsudai Rehabilitation Hospital, Tokyo, Japan
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuya Tsuji
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Fuminari Kaneko
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
2
|
Lo YT, Lim MJR, Kok CY, Wang S, Blok SZ, Ang TY, Ng VYP, Rao JP, Chua KSG. Neural Interface-Based Motor Neuroprosthesis in Poststroke Upper Limb Neurorehabilitation: An Individual Patient Data Meta-analysis. Arch Phys Med Rehabil 2024; 105:2336-2349. [PMID: 38579958 DOI: 10.1016/j.apmr.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVE To determine the efficacy of neural interface-based neurorehabilitation, including brain-computer interface, through conventional and individual patient data (IPD) meta-analysis and to assess clinical parameters associated with positive response to neural interface-based neurorehabilitation. DATA SOURCES PubMed, EMBASE, and Cochrane Library databases up to February 2022 were reviewed. STUDY SELECTION Studies using neural interface-controlled physical effectors (functional electrical stimulation and/or powered exoskeletons) and reported Fugl-Meyer Assessment-upper-extremity (FMA-UE) scores were identified. This meta-analysis was prospectively registered on PROSPERO (#CRD42022312428). PRISMA guidelines were followed. DATA EXTRACTION Changes in FMA-UE scores were pooled to estimate the mean effect size. Subgroup analyses were performed on clinical parameters and neural interface parameters with both study-level variables and IPD. DATA SYNTHESIS Forty-six studies containing 617 patients were included. Twenty-nine studies involving 214 patients reported IPD. FMA-UE scores increased by a mean of 5.23 (95% confidence interval [CI]: 3.85-6.61). Systems that used motor attempt resulted in greater FMA-UE gain than motor imagery, as did training lasting >4 vs ≤4 weeks. On IPD analysis, the mean time-to-improvement above minimal clinically important difference (MCID) was 12 weeks (95% CI: 7 to not reached). At 6 months, 58% improved above MCID (95% CI: 41%-70%). Patients with severe impairment (P=.042) and age >50 years (P=.0022) correlated with the failure to improve above the MCID on univariate log-rank tests. However, these factors were only borderline significant on multivariate Cox analysis (hazard ratio [HR] 0.15, P=.08 and HR 0.47, P=.06, respectively). CONCLUSION Neural interface-based motor rehabilitation resulted in significant, although modest, reductions in poststroke impairment and should be considered for wider applications in stroke neurorehabilitation.
Collapse
Affiliation(s)
- Yu Tung Lo
- Department of Neurosurgery, National Neuroscience Institute; Duke-NUS Medical School.
| | - Mervyn Jun Rui Lim
- Department of Neurosurgery, National University Hospital; National University of Singapore, Yong Loo Lin School of Medicine
| | - Chun Yen Kok
- Department of Neurosurgery, National Neuroscience Institute
| | - Shilin Wang
- Department of Neurosurgery, National Neuroscience Institute
| | | | - Ting Yao Ang
- Department of Neurosurgery, National Neuroscience Institute
| | | | - Jai Prashanth Rao
- Department of Neurosurgery, National Neuroscience Institute; Duke-NUS Medical School
| | - Karen Sui Geok Chua
- National University of Singapore, Yong Loo Lin School of Medicine; Institute of Rehabilitation Excellence, Tan Tock Seng Hospital Rehabilitation Centre; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
3
|
Carson RG, Hayward KS. Using mechanistic knowledge to appraise contemporary approaches to the rehabilitation of upper limb function following stroke. J Physiol 2024. [PMID: 39129269 DOI: 10.1113/jp285559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
It is a paradox of neurological rehabilitation that, in an era in which preclinical models have produced significant advances in our mechanistic understanding of neural plasticity, there is inadequate support for many therapies recommended for use in clinical practice. When the goal is to estimate the probability that a specific form of therapy will have a positive clinical effect, the integration of mechanistic knowledge (concerning 'the structure or way of working of the parts in a natural system') may improve the quality of inference. This is illustrated by analysis of three contemporary approaches to the rehabilitation of lateralized dysfunction affecting people living with stroke: constraint-induced movement therapy; mental practice; and mirror therapy. Damage to 'cross-road' regions of the structural (white matter) brain connectome generates deficits that span multiple domains (motor, language, attention and verbal/spatial memory). The structural integrity of these regions determines not only the initial functional status, but also the response to therapy. As structural disconnection constrains the recovery of functional capability, 'disconnectome' modelling provides a basis for personalized prognosis and precision rehabilitation. It is now feasible to refer a lesion delineated using a standard clinical scan to a (dis)connectivity atlas derived from the brains of other stroke survivors. As the individual disconnection pattern thus obtained suggests the functional domains most likely be compromised, a therapeutic regimen can be tailored accordingly. Stroke is a complex disorder that burdens individuals with distinct constellations of brain damage. Mechanistic knowledge is indispensable when seeking to ameliorate the behavioural impairments to which such damage gives rise.
Collapse
Affiliation(s)
- Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin 2, Ireland
- School of Psychology, Queen's University Belfast, Belfast, UK
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kathryn S Hayward
- Departments of Physiotherapy, University of Melbourne, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
- The Florey, University of Melbourne, Melbourne, Australia
| |
Collapse
|
4
|
Iwama S, Morishige M, Kodama M, Takahashi Y, Hirose R, Ushiba J. High-density scalp electroencephalogram dataset during sensorimotor rhythm-based brain-computer interfacing. Sci Data 2023; 10:385. [PMID: 37322080 PMCID: PMC10272177 DOI: 10.1038/s41597-023-02260-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Real-time functional imaging of human neural activity and its closed-loop feedback enable voluntary control of targeted brain regions. In particular, a brain-computer interface (BCI), a direct bridge of neural activities and machine actuation is one promising clinical application of neurofeedback. Although a variety of studies reported successful self-regulation of motor cortical activities probed by scalp electroencephalogram (EEG), it remains unclear how neurophysiological, experimental conditions or BCI designs influence variability in BCI learning. Here, we provide the EEG data during using BCIs based on sensorimotor rhythm (SMR), consisting of 4 separate datasets. All EEG data were acquired with a high-density scalp EEG setup containing 128 channels covering the whole head. All participants were instructed to perform motor imagery of right-hand movement as the strategy to control BCIs based on the task-related power attenuation of SMR magnitude, that is event-related desynchronization. This dataset would allow researchers to explore the potential source of variability in BCI learning efficiency and facilitate follow-up studies to test the explicit hypotheses explored by the dataset.
Collapse
Affiliation(s)
- Seitaro Iwama
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Tokyo, Kanagawa, Japan
| | - Masumi Morishige
- Graduate School of Science and Technology, Keio University, Tokyo, Kanagawa, Japan
| | - Midori Kodama
- Graduate School of Science and Technology, Keio University, Tokyo, Kanagawa, Japan
| | - Yoshikazu Takahashi
- Graduate School of Science and Technology, Keio University, Tokyo, Kanagawa, Japan
| | - Ryotaro Hirose
- Graduate School of Science and Technology, Keio University, Tokyo, Kanagawa, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Tokyo, Kanagawa, Japan.
| |
Collapse
|
5
|
Cao L, Wang W, Huang C, Xu Z, Wang H, Jia J, Chen S, Dong Y, Fan C, de Albuquerque VHC. An Effective Fusing Approach by Combining Connectivity Network Pattern and Temporal-Spatial Analysis for EEG-Based BCI Rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2264-2274. [PMID: 35969547 DOI: 10.1109/tnsre.2022.3198434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Motor-modality-based brain computer interface (BCI) could promote the neural rehabilitation for stroke patients. Temporal-spatial analysis was commonly used for pattern recognition in this task. This paper introduced a novel connectivity network analysis for EEG-based feature selection. The network features of connectivity pattern not only captured the spatial activities responding to motor task, but also mined the interactive pattern among these cerebral regions. Furthermore, the effective combination between temporal-spatial analysis and network analysis was evaluated for improving the performance of BCI classification (81.7%). And the results demonstrated that it could raise the classification accuracies for most of patients (6 of 7 patients). This proposed method was meaningful for developing the effective BCI training program for stroke rehabilitation.
Collapse
|
6
|
Aoyama T, Kanazawa A, Kohno Y, Watanabe S, Tomita K, Kaneko F. Influence of Visual Stimulation-Induced Passive Reproduction of Motor Images in the Brain on Motor Paralysis After Stroke. Front Hum Neurosci 2021; 15:674139. [PMID: 34239429 PMCID: PMC8258409 DOI: 10.3389/fnhum.2021.674139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Finger flexor spasticity, which is commonly observed among patients with stroke, disrupts finger extension movement, consequently influencing not only upper limb function in daily life but also the outcomes of upper limb therapeutic exercise. Kinesthetic illusion induced by visual stimulation (KINVIS) has been proposed as a potential treatment for spasticity in patients with stroke. However, it remains unclear whether KINVIS intervention alone could improve finger flexor spasticity and finger extension movements without other intervention modalities. Therefore, the current study investigated the effects of a single KINVIS session on finger flexor spasticity, including its underlying neurophysiological mechanisms, and finger extension movements. To this end, 14 patients who experienced their first episode of stroke participated in this study. A computer screen placed over the patient's forearm displayed a pre-recorded mirror image video of the patient's non-paretic hand performing flexion-extension movements during KINVIS. The position and size of the artificial hand were adjusted appropriately to create a perception that the artificial hand was the patient's own. Before and after the 20-min intervention, Modified Ashworth Scale (MAS) scores and active range of finger extension movements of the paretic hand were determined. Accordingly, MAS scores and active metacarpophalangeal joint extension range of motion improved significantly after the intervention. Moreover, additional experimentation was performed using F-waves on eight patients whose spasticity was reduced by KINVIS to determine whether the same intervention also decreased spinal excitability. Our results showed no change in F-wave amplitude and persistence after the intervention. These results demonstrate the potential clinical significance of KINVIS as a novel intervention for improving finger flexor spasticity and extension movements, one of the most significant impairments among patients with stroke. The decrease in finger flexor spasticity following KINVIS may be attributed to neurophysiological changes not detectable by the F-wave, such as changes in presynaptic inhibition of Ia afferents. Further studies are certainly needed to determine the long-term effects of KINVIS on finger spasticity, as well as the neurophysiological mechanisms explaining the reduction in spasticity.
Collapse
Affiliation(s)
- Toshiyuki Aoyama
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Atsushi Kanazawa
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ibaraki, Japan
| | - Yutaka Kohno
- Centre for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Shinya Watanabe
- Department of Occupational Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ami, Japan
| | - Kazuhide Tomita
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Fuminari Kaneko
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| |
Collapse
|
7
|
Nakayama H, Kawakami M, Takahashi Y, Kondo K, Shimizu E. The changes in spinal reciprocal inhibition during motor imagery in lower extremity. Neurol Sci 2021; 42:3813-3820. [PMID: 33464412 DOI: 10.1007/s10072-021-05054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
Motor imagery (MI) is known to improve motor function through enhancement of motor cortex activity. Spinal reciprocal inhibition (RI) is modulated by motor cortex activity, and, therefore, MI may change RI. The aim of this study was to examine the changes in RI during MI involving the lower extremity. Spinal RI was measured from the tibialis anterior (TA) to the soleus (SOL). Eleven healthy adults participated in experiment 1. All participants performed the following three conditions, and RI was assessed during each condition: (1) resting condition; (2) MI of ankle dorsiflexion condition (MI-DF); and (3) MI of ankle plantarflexion condition (MI-PF). Twelve healthy adults participated in experiment 2. All participants performed the following two conditions, and RI was assessed before and after MI practice for 10 min: (1) resting condition and (2) MI-DF. The interval between the conditioning and test stimulus (inter-stimulus interval; ISI) was set at 0, 1, 2, or 3 ms and 20 ms. In experiment 1, RI during MI-PF was significantly decreased compared with that during resting with both stimulus intervals. RI during MI-DF showed no significant change compared with that during resting with both ISIs. In experiment 2, the difference between the rest condition and the MI-DF condition after the MI task with ISI of 20 ms was significantly higher than before the MI task. Our findings suggest that real-time changes in RI during MI involving the lower extremity may vary depending on the direction of motion and MI practice.
Collapse
Affiliation(s)
- Hideto Nakayama
- Yatsu Hoken Hospital, 4-6-16 Yatsu, Narashino-shi, Chiba, 275-0026, Japan.,Tokyo Bay Rehabilitation Hospital, 4-1-1 Yatsu, Narashino-shi, Chiba, 275-0026, Japan.,Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Chuo-ku, inohana, Chiba-shi, Chiba, 260-8670, Japan
| | - Michiyuki Kawakami
- Tokyo Bay Rehabilitation Hospital, 4-1-1 Yatsu, Narashino-shi, Chiba, 275-0026, Japan. .,Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Yoko Takahashi
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyou-ku, Tokyo, 113-8421, Japan
| | - Kunitsugu Kondo
- Tokyo Bay Rehabilitation Hospital, 4-1-1 Yatsu, Narashino-shi, Chiba, 275-0026, Japan
| | - Eiji Shimizu
- Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Chuo-ku, inohana, Chiba-shi, Chiba, 260-8670, Japan
| |
Collapse
|
8
|
Pan W, Wang P, Song X, Sun X, Xie Q. The Effects of Combined Low Frequency Repetitive Transcranial Magnetic Stimulation and Motor Imagery on Upper Extremity Motor Recovery Following Stroke. Front Neurol 2019; 10:96. [PMID: 30873100 PMCID: PMC6401593 DOI: 10.3389/fneur.2019.00096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/24/2019] [Indexed: 11/29/2022] Open
Abstract
Objective: To investigate the effects of low frequency transcranial magnetic stimulation (LF-rTMS) combined with motor imagery (MI) on upper limb motor function during stroke rehabilitation. Background: Hemiplegic upper extremity activity obstacle is a common movement disorder after stroke. Compared with a single intervention, sequential protocol or combination of several techniques has been proven to be better for alleviating motor function disorder. Non-invasive neuromodulation techniques such as repetitive transcranial magnetic stimulation (rTMS) and motor imagery (MI) have been verified to augment the efficacy of rehabilitation. Methods:Participants were randomly assigned to 2 intervention cohorts: (1) experimental group (rTMS+MI group) was applied at 1 Hz rTMS over the primary motor cortex of the contralesional hemisphere combined with audio-based MI; (2) control group (rTMS group) received the same therapeutic parameters of rTMS combined with audiotape-led relaxation. LF-rTMS protocol was conducted in 10 sessions over 2 weeks for 30 min. Functional measurements include Wolf Motor Function Test (WMFT), the Fugl-Meyer Assessment Upper Extremity (UE-FMA) subscore, the Box and Block Test (BBT), and the Modified Barthel index (MBI) were conducted at baseline, the second week (week 2) and the fourth week (week 4). Results: All assessments of upper limb function improved in both groups at weeks 2 and 4. In particular, significant differences were observed between two groups at end-intervention and after intervention (p < 0.05). In these findings, we saw greater changes of WMFT (p < 0.01), UE-FMA (p < 0.01), BBT (p < 0.01), and MBI (p < 0.001) scores in the experimental group. Conclusions: LF-rTMS combined with MI had a positive effect on motor function of upper limb and can be used for the rehabilitation of upper extremity motor recovery in stroke patients.
Collapse
Affiliation(s)
- Wenxiu Pan
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Song
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaopei Sun
- Department of Rehabilitation Medicine, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China
| |
Collapse
|
9
|
Takahashi Y, Kawakami M, Yamaguchi T, Idogawa Y, Tanabe S, Kondo K, Liu M. Effects of Leg Motor Imagery Combined With Electrical Stimulation on Plasticity of Corticospinal Excitability and Spinal Reciprocal Inhibition. Front Neurosci 2019; 13:149. [PMID: 30846928 PMCID: PMC6393385 DOI: 10.3389/fnins.2019.00149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/08/2019] [Indexed: 12/14/2022] Open
Abstract
Motor imagery (MI) combined with electrical stimulation (ES) enhances upper-limb corticospinal excitability. However, its after-effects on both lower limb corticospinal excitability and spinal reciprocal inhibition remain unknown. We aimed to investigate the effects of MI combined with peripheral nerve ES (MI + ES) on the plasticity of lower limb corticospinal excitability and spinal reciprocal inhibition. Seventeen healthy individuals performed the following three tasks on different days, in a random order: (1) MI alone; (2) ES alone; and (3) MI + ES. The MI task consisted of repetitive right ankle dorsiflexion for 20 min. ES was percutaneously applied to the common peroneal nerve at a frequency of 100 Hz and intensity of 120% of the sensory threshold of the tibialis anterior (TA) muscle. We examined changes in motor-evoked potential (MEP) of the TA (task-related muscle) and soleus muscle (SOL; task-unrelated muscle). We also examined disynaptic reciprocal inhibition before, immediately after, and 10, 20, and 30 min after the task. MI + ES significantly increased TA MEPs immediately and 10 min after the task compared with baseline, but did not change the task-unrelated muscle (SOL) MEPs. MI + ES resulted in a significant increase in the magnitude of reciprocal inhibition immediately and 10 min after the task compared with baseline. MI and ES alone did not affect TA MEPs or reciprocal inhibition. MI combined with ES is effective in inducing plastic changes in lower limb corticospinal excitability and reciprocal Ia inhibition.
Collapse
Affiliation(s)
- Yoko Takahashi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.,Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomofumi Yamaguchi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | | | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | | | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Okuyama K, Ogura M, Kawakami M, Tsujimoto K, Okada K, Miwa K, Takahashi Y, Abe K, Tanabe S, Yamaguchi T, Liu M. Effect of the combination of motor imagery and electrical stimulation on upper extremity motor function in patients with chronic stroke: preliminary results. Ther Adv Neurol Disord 2018; 11:1756286418804785. [PMID: 30327684 PMCID: PMC6178123 DOI: 10.1177/1756286418804785] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
Background The combination of motor imagery (MI) and afferent input with electrical stimulation (ES) enhances the excitability of the corticospinal tract compared with motor imagery alone or electrical stimulation alone. However, its therapeutic effect is unknown in patients with hemiparetic stroke. We performed a preliminary examination of the therapeutic effects of MI + ES on upper extremity (UE) motor function in patients with chronic stroke. Methods A total of 10 patients with chronic stroke demonstrating severe hemiparesis participated. The imagined task was extension of the affected finger. Peripheral nerve electrical stimulation was applied to the radial nerve at the spiral groove. MI + ES intervention was conducted for 10 days. UE motor function as assessed with the Fugl-Meyer assessment UE motor score (FMA-UE), the amount of the affected UE use in daily life as assessed with a Motor Activity Log (MAL-AOU), and the degree of hypertonia in flexor muscles as assessed with the Modified Ashworth Scale (MAS) were evaluated before and after intervention. To assess the change in spinal neural circuits, reciprocal inhibition between forearm extensor and flexor muscles with the H reflex conditioning-test paradigm at interstimulus intervals (ISIs) of 0, 20, and 100 ms were measured before and after intervention. Results UE motor function, the amount of the affected UE use, and muscle hypertonia in flexor muscles were significantly improved after MI + ES intervention (FMA-UE: p < 0.01, MAL-AOU: p < 0.01, MAS: p = 0.02). Neurophysiologically, the intervention induced restoration of reciprocal inhibition from the forearm extensor to the flexor muscles (ISI at 0 ms: p = 0.03, ISI at 20 ms: p = 0.03, ISI at 100 ms: p = 0.01). Conclusion MI + ES intervention was effective for improving UE motor function in patients with severe paralysis.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Miho Ogura
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kengo Tsujimoto
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kohsuke Okada
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kazuma Miwa
- Department of Rehabilitation Medicine, Keio University Hospital, Tokyo, Japan
| | - Yoko Takahashi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kaoru Abe
- Department of Rehabilitation Medicine, Keio University Hospital, Tokyo, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake-shi, Aichi, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata-shi, Yamagata, Japan
| | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|