1
|
Shi RR, He TQ, Lin MS, Xu J, Gu JH, Xu H. O-GlcNAcylation in ischemic diseases. Front Pharmacol 2024; 15:1377235. [PMID: 38783961 PMCID: PMC11113977 DOI: 10.3389/fphar.2024.1377235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Protein glycosylation is an extensively studied field, with the most studied forms being oxygen or nitrogen-linked N-acetylglucosamine (O-GlcNAc or N-GlcNAc) glycosylation. Particular residues on proteins are targeted by O-GlcNAcylation, which is among the most intricate post-translational modifications. Significantly contributing to an organism's proteome, it influences numerous factors affecting protein stability, function, and subcellular localization. It also modifies the cellular function of target proteins that have crucial responsibilities in controlling pathways related to the central nervous system, cardiovascular homeostasis, and other organ functions. Under conditions of acute stress, changes in the levels of O-GlcNAcylation of these proteins may have a defensive function. Nevertheless, deviant O-GlcNAcylation nullifies this safeguard and stimulates the advancement of several ailments, the prognosis of which relies on the cellular milieu. Hence, this review provides a concise overview of the function and comprehension of O-GlcNAcylation in ischemia diseases, aiming to facilitate the discovery of new therapeutic targets for efficient treatment, particularly in patients with diabetes.
Collapse
Affiliation(s)
- Rui-Rui Shi
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Tian-Qi He
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Department of Pharmacy, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Meng-Si Lin
- Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Jian Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Department of Pharmacy, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Jin-Hua Gu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Department of Pharmacy, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Hui Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| |
Collapse
|
2
|
Pranata R, Wahyudi DP. Prevention of Contrast-induced Nephropathy in Patients Undergoing Percutaneous Coronary Intervention. Curr Cardiol Rev 2023; 20:CCR-EPUB-135553. [PMID: 37877506 PMCID: PMC11071674 DOI: 10.2174/011573403x260319231016075216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 10/26/2023] Open
Abstract
Contrast-induced nephropathy (CIN) or contrast-induced acute kidney injury has varying definitions, but in general, increased serum creatinine level by ≥ 0.3 mg/dL (26.5 µmol/L) or 1.5x of baseline value or urine output <0.5 mL/kg/h within 1-7 days after contrast media (CM) administration can be considered as CIN. CIN is one of the most common complications and is associated with increased mortality in patients undergoing percutaneous coronary intervention (PCI). Thus, risk stratification for CIN should be made and preventive strategies should be employed in which the intensity of the approach must be tailored to patient's risk profile. In all patients, adequate hydration is required, nephrotoxic medications should be discontinued, and pre-procedural high-intensity statin is recommended. In patients with an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2, IV hydration should be started 12 hours pre-procedure up until 12-24 hours after the procedure. Remote ischemic preconditioning may be performed pre-procedurally. Radial first approach for vascular access is recommended. During the procedure, low or iso-osmolar CM should be used and its volume should be limited to eGFR x 3.7. In patients at high risk for CIN, additional contrast-sparing strategies may be applied, such as using a contrast reduction system, 5 Fr catheter with no sideholes, CM dilution, limiting test injection, confirming placement using guidewire, use of stent enhancing imaging technology, using metallic/software roadmap to guide PCI, use of IVUS or dextran-based OCT, and coronary aspiration. A more advanced hydration technique based on central venous pressure, left ventricular end-diastolic pressure, or using furosemide-matched hydration, might be considered.
Collapse
Affiliation(s)
- Raymond Pranata
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Dendi Puji Wahyudi
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin General Hospital, Bandung, Indonesia
| |
Collapse
|
3
|
Ortega-Trejo JA, Bobadilla NA. Is Renal Ischemic Preconditioning an Alternative to Ameliorate the Short- and Long-Term Consequences of Acute Kidney Injury? Int J Mol Sci 2023; 24:ijms24098345. [PMID: 37176051 PMCID: PMC10178892 DOI: 10.3390/ijms24098345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Acute kidney injury (AKI) is a global health problem and has recently been recognized as a risk factor for developing chronic kidney disease (CKD). Unfortunately, there are no effective treatments to reduce or prevent AKI, which results in high morbidity and mortality rates. Ischemic preconditioning (IPC) has emerged as a promising strategy to prevent, to the extent possible, renal tissue from AKI. Several studies have used this strategy, which involves short or long cycles of ischemia/reperfusion (IR) prior to a potential fatal ischemic injury. In most of these studies, IPC was effective at reducing renal damage. Since the first study that showed renoprotection due to IPC, several studies have focused on finding the best strategy to activate correctly and efficiently reparative mechanisms, generating different modalities with promising results. In addition, the studies performing remote IPC, by inducing an ischemic process in distant tissues before a renal IR, are also addressed. Here, we review in detail existing studies on IPC strategies for AKI pathophysiology and the proposed triggering mechanisms that have a positive impact on renal function and structure in animal models of AKI and in humans, as well as the prospects and challenges for its clinical application.
Collapse
Affiliation(s)
- Juan Antonio Ortega-Trejo
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Norma A Bobadilla
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| |
Collapse
|
4
|
Silva-Aguiar RP, Peruchetti DB, Pinheiro AAS, Caruso-Neves C, Dias WB. O-GlcNAcylation in Renal (Patho)Physiology. Int J Mol Sci 2022; 23:ijms231911260. [PMID: 36232558 PMCID: PMC9569498 DOI: 10.3390/ijms231911260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/29/2022] Open
Abstract
Kidneys maintain internal milieu homeostasis through a well-regulated manipulation of body fluid composition. This task is performed by the correlation between structure and function in the nephron. Kidney diseases are chronic conditions impacting healthcare programs globally, and despite efforts, therapeutic options for its treatment are limited. The development of chronic degenerative diseases is associated with changes in protein O-GlcNAcylation, a post-translation modification involved in the regulation of diverse cell function. O-GlcNAcylation is regulated by the enzymatic balance between O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) which add and remove GlcNAc residues on target proteins, respectively. Furthermore, the hexosamine biosynthetic pathway provides the substrate for protein O-GlcNAcylation. Beyond its physiological role, several reports indicate the participation of protein O-GlcNAcylation in cardiovascular, neurodegenerative, and metabolic diseases. In this review, we discuss the impact of protein O-GlcNAcylation on physiological renal function, disease conditions, and possible future directions in the field.
Collapse
Affiliation(s)
- Rodrigo P. Silva-Aguiar
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Diogo B. Peruchetti
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Ana Acacia S. Pinheiro
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro 21045-900, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro 21045-900, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
| | - Wagner B. Dias
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Correspondence:
| |
Collapse
|
5
|
Liu Y, Yao RZ, Lian S, Liu P, Hu YJ, Shi HZ, Lv HM, Yang YY, Xu B, Li SZ. O-GlcNAcylation: the "stress and nutrition receptor" in cell stress response. Cell Stress Chaperones 2021; 26:297-309. [PMID: 33159661 PMCID: PMC7925768 DOI: 10.1007/s12192-020-01177-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
O-GlcNAcylation is an atypical, reversible, and dynamic glycosylation that plays a critical role in maintaining the normal physiological functions of cells by regulating various biological processes such as signal transduction, proteasome activity, apoptosis, autophagy, transcription, and translation. It can also respond to environmental changes and physiological signals to play the role of "stress receptor" and "nutrition sensor" in a variety of stress responses and biological processes. Even, a homeostatic disorder of O-GlcNAcylation may cause many diseases. Therefore, O-GlcNAcylation and its regulatory role in stress response are reviewed in this paper.
Collapse
Affiliation(s)
- Yang Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Rui-Zhi Yao
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, People's Republic of China
| | - Shuai Lian
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Peng Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Ya-Jie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Hong-Zhao Shi
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Hong-Ming Lv
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Yu-Ying Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| | - Shi-Ze Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| |
Collapse
|
6
|
Hu C, Zhou G, Liu K, Yin W, Zhou L, Wang J, Chen L, Zuo S, Xie Y, Zuo X. CaMKII as a key regulator of contrast-induced nephropathy through mPTP opening in HK-2 cells. Cell Signal 2020; 75:109734. [PMID: 32791339 DOI: 10.1016/j.cellsig.2020.109734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 07/26/2020] [Accepted: 08/07/2020] [Indexed: 11/26/2022]
Abstract
Contrast-induced nephropathy (CIN), refers to acute kidney injury observed after administration of contrast media during angiographic or other medical procedures such as urography, and accounting for 12% of all causes of acute renal failure, but no specific prevention or treatment strategy exists for its obscure pathophysiology. The aim of our study was to explore the influence of calcium/calmodulin-dependent protein kinase II (CaMKII) in CIN by using HK-2 cells. Knockdown of CypD was achieved by lentivirus, and CaMKII overexpression by transfection with the plasmid. In this study, we have demonstrated that CypD-mediated mPTP opening triggered mitochondrial dysfunction and tubule cells apoptosis in CIN. We also found that iohexol treatment was associated with mitochondrial ROS overloading, ATP depletion and LDH release. Inhibition of CypD with the pharmacologic inhibitor or knockdown of CypD abrogated mPTP opening, oxidative stress, mitochondria damage, and cell apoptosis induced by iohexol. In addition, we found that inhibition of the CaMKII activity alleviated iohexol-induced CypD expression, whereas also decreased mPTP opening, oxidative stress, mitochondria damage, and cell apoptosis, similarly to the inhibition of CypD did. Moreover, CaMKII overexpression enhanced iohexol-induced mPTP opening, mitochondrial damage and renal tubular epithelial cells apoptosis. These findings first identified the novel role of CaMKII in iohexol-induced tubular cells apoptosis and delineated the CaMKII-CypD/mPTP pathway during contrast-induced tubular cell damage. Hence, these results could provide a new strategy for CIN protection.
Collapse
Affiliation(s)
- Can Hu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Ge Zhou
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Kun Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Wenjun Yin
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Lingyun Zhou
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Jianglin Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Linhua Chen
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Shanru Zuo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Yueliang Xie
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xiaocong Zuo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
7
|
Johnsen M, Kubacki T, Yeroslaviz A, Späth MR, Mörsdorf J, Göbel H, Bohl K, Ignarski M, Meharg C, Habermann B, Altmüller J, Beyer A, Benzing T, Schermer B, Burst V, Müller RU. The Integrated RNA Landscape of Renal Preconditioning against Ischemia-Reperfusion Injury. J Am Soc Nephrol 2020; 31:716-730. [PMID: 32111728 DOI: 10.1681/asn.2019050534] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 01/05/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Although AKI lacks effective therapeutic approaches, preventive strategies using preconditioning protocols, including caloric restriction and hypoxic preconditioning, have been shown to prevent injury in animal models. A better understanding of the molecular mechanisms that underlie the enhanced resistance to AKI conferred by such approaches is needed to facilitate clinical use. We hypothesized that these preconditioning strategies use similar pathways to augment cellular stress resistance. METHODS To identify genes and pathways shared by caloric restriction and hypoxic preconditioning, we used RNA-sequencing transcriptome profiling to compare the transcriptional response with both modes of preconditioning in mice before and after renal ischemia-reperfusion injury. RESULTS The gene expression signatures induced by both preconditioning strategies involve distinct common genes and pathways that overlap significantly with the transcriptional changes observed after ischemia-reperfusion injury. These changes primarily affect oxidation-reduction processes and have a major effect on mitochondrial processes. We found that 16 of the genes differentially regulated by both modes of preconditioning were strongly correlated with clinical outcome; most of these genes had not previously been directly linked to AKI. CONCLUSIONS This comparative analysis of the gene expression signatures in preconditioning strategies shows overlapping patterns in caloric restriction and hypoxic preconditioning, pointing toward common molecular mechanisms. Our analysis identified a limited set of target genes not previously known to be associated with AKI; further study of their potential to provide the basis for novel preventive strategies is warranted. To allow for optimal interactive usability of the data by the kidney research community, we provide an online interface for user-defined interrogation of the gene expression datasets (http://shiny.cecad.uni-koeln.de:3838/IRaP/).
Collapse
Affiliation(s)
- Marc Johnsen
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Torsten Kubacki
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | | - Martin Richard Späth
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jannis Mörsdorf
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Heike Göbel
- Institute for Pathology, Diagnostic and Experimental Nephropathology Unit
| | - Katrin Bohl
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases
| | - Michael Ignarski
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases
| | - Caroline Meharg
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; and
| | - Bianca Habermann
- Development Biology Institute of Marseille, Aix-Marseille University, CNRS, Marseille, France
| | | | - Andreas Beyer
- Institute for Pathology, Diagnostic and Experimental Nephropathology Unit.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Institute for Pathology, Diagnostic and Experimental Nephropathology Unit.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Institute for Pathology, Diagnostic and Experimental Nephropathology Unit.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Volker Burst
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany;
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; .,Institute for Pathology, Diagnostic and Experimental Nephropathology Unit.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Remote Ischaemic Preconditioning Reduces Kidney Injury Biomarkers in Patients Undergoing Open Surgical Lower Limb Revascularisation: A Randomised Trial. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7098505. [PMID: 32047578 PMCID: PMC7003258 DOI: 10.1155/2020/7098505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/02/2022]
Abstract
Background and Aims Perioperative kidney injury affects 12.7% of patients undergoing lower limb revascularisation surgery. Remote ischaemic preconditioning (RIPC) is a potentially protective procedure against organ damage and consists of short nonlethal episodes of ischaemia. The main objective of this substudy was to evaluate the effect of RIPC on kidney function, inflammation, and oxidative stress in patients undergoing open surgical lower limb revascularisation. Materials and Methods. This is a subgroup analysis of a randomised, sham-controlled, double-blinded, single-centre study. A RIPC or a sham procedure was performed noninvasively along with preparation for anaesthesia in patients undergoing open surgical lower limb revascularisation. The RIPC protocol consisted of 4 cycles of 5 minutes of ischaemia, with 5 minutes of reperfusion between every episode. Blood was collected for analysis preoperatively, 2, 8, and 24 hours after surgery, and urine was collected preoperatively and 24 hours after surgery. Results Data of 56 patients were included in the analysis. Serum creatinine, cystatin C, and beta-2 microglobulin increased, and eGFR decreased across all time points significantly more in the sham group than in the RIPC group (p = 0.021, p = 0.021, p = 0.021, p = 0.021, p = 0.021, Conclusions Our finding of reduced release of kidney injury biomarkers may indicate the renoprotective effect of RIPC in patients undergoing open surgical lower limb revascularisation. The trial is registered with ClinicalTrials.gov NCT02689414.
Collapse
|
9
|
Pranata R, Tondas AE, Vania R, Toruan MPL, Lukito AA, Siswanto BB. Remote ischemic preconditioning reduces the incidence of contrast-induced nephropathy in patients undergoing coronary angiography/intervention: Systematic review and meta-analysis of randomized controlled trials. Catheter Cardiovasc Interv 2020; 96:1200-1212. [PMID: 31912996 DOI: 10.1002/ccd.28709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/03/2019] [Accepted: 12/28/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Contrast-induced nephropathy (CIN) is associated with increased mortality and morbidity in patients undergoing coronary angiography (CAG) and percutaneous coronary intervention (PCI). We aimed to assess the latest evidence on the effect of remote ischemic preconditioning (RIPC) on the incidence of CIN in patients undergoing CAG/PCI. METHODS We performed a comprehensive search on topics assessing RIPC and CIN in CAG/PCI patients from inception up until July 2019 through several electronic databases. RESULTS There were a total of 1,925 subjects from 14 randomized controlled trials. Remote ischemic preconditioning was associated with reduced CIN incidence in patients undergoing CAG/PCI (OR 0.41 [0.30, 0.55], p < .001; I2 : 22%). The nephroprotective effect was also demonstrated in those at moderate-high risk for CIN subgroup (OR 0.41 [0.29, 0.58], p < .001; I2 : 26%) and PCI-only subgroup (OR 0.41 [0.29, 0.58], p < .001; I2 : 0%). Time from RIPC to CAG/PCI has similar effectiveness among ≤45, ≤60, and ≤120 min. Mortality, rehospitalization, hemodialysis, and major adverse events were lower in the RIPC group (OR 0.50 [0.33, 0.76], p = .001; I2 : 0%). Grading of recommendations assessment, development and evaluation (GRADE) assessment showed that RIPC has high evidence certainty for reducing CIN in patients undergoing PCI/CAG, moderate-high risk subgroup, and PCI-only subgroup with absolute reduction of 97 per 1,000, 129 per 1,000, and 121 per 1,000, respectively. Harbord test showed no evidence for the presence of small-study effects (p = .157). CONCLUSIONS Remote ischemic preconditioning is an effective procedure to reduce the risk of CIN and should be considered in patients with moderate-high risk at developing CIN.
Collapse
Affiliation(s)
- Raymond Pranata
- Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia
| | - Alexander E Tondas
- Faculty of Medicine Universitas Sriwijaya, Department of Cardiology and Vascular Medicine, Mohammad Hoesin General Hospital, Palembang, Indonesia
| | - Rachel Vania
- Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia
| | - Mangiring P L Toruan
- Faculty of Medicine Universitas Sriwijaya, Department of Cardiology and Vascular Medicine, Mohammad Hoesin General Hospital, Palembang, Indonesia
| | - Antonia A Lukito
- Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia.,Department of Cardiology and Vascular Medicine, Siloam Hospitals Lippo Village, Tangerang, Indonesia
| | - Bambang B Siswanto
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| |
Collapse
|