1
|
Whitman J, Adhikarla V, Tumyan L, Mortimer J, Huang W, Rockne R, Peterson JR, Cole J. Validation of Clinical Dynamic Contrast-Enhanced Magnetic Resonance Imaging Perfusion Modeling and Neoadjuvant Chemotherapy Response Prediction in Breast Cancer Using 18FDG and 64Cu-DOTA-Trastuzumab Positron Emission Tomography Studies. JCO Clin Cancer Inform 2025; 9:e2300248. [PMID: 39808751 DOI: 10.1200/cci.23.00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/25/2024] [Accepted: 11/05/2024] [Indexed: 01/16/2025] Open
Abstract
PURPOSE Perfusion modeling presents significant opportunities for imaging biomarker development in breast cancer but has historically been held back by the need for data beyond the clinical standard of care (SoC) and uncertainty in the interpretability of results. We aimed to design a perfusion model applicable to breast cancer SoC dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) series with results stable to low temporal resolution imaging, comparable with published results using full-resolution DCE-MRI, and correlative with orthogonal imaging modalities indicative of biophysical markers. METHODS Subsampled high-temporal-resolution DCE-MRI series were run through our perfusion model and resulting fits were compared for consistency. The fits were also compared against previously published results from institutions using the full resolution series. The model was then evaluated on a separate cohort for validity of biomarker indications. Finally, the model was used as a fundamental part of predicting response to neoadjuvant chemotherapy (NACT). RESULTS Temporally subsampled DCE-MRI series yield perfusion fit variations on the scale of 1% of the tumor median value when input frames are varied. Fits generated from pseudoclinical series are within the variation range seen between imaging sites (ρ = 0.55), voxel-wise. The model also demonstrates significant correlations with orthogonal positron emission tomography imaging, indicating potential for use as a biomarker proxy. Specifically, using the perfusion fits as the grounding for a biophysical simulation of response, we correctly predict the pathologic complete response status after NACT in 15 of 18 patients, for an accuracy of 0.83, with a specificity and sensitivity of 0.83 as well. CONCLUSION Clinical DCE-MRI data may be leveraged to provide stable perfusion fit results and indirectly interrogate the tumor microenvironment. These fits can then be used downstream for prediction of response to NACT with high accuracy.
Collapse
Affiliation(s)
| | - Vikram Adhikarla
- Division of Mathematical Oncology and Computational Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Lusine Tumyan
- Department of Radiology, City of Hope National Medical Center, Duarte, CA
| | - Joanne Mortimer
- Department of Medical Oncology and Medical Therapeutics Research, City of Hope National Medical Center, Duarte, CA
| | - Wei Huang
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Russell Rockne
- Division of Mathematical Oncology and Computational Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA
| | | | | |
Collapse
|
2
|
Tabnak P, HajiEsmailPoor Z, Baradaran B, Pashazadeh F, Aghebati Maleki L. MRI-Based Radiomics Methods for Predicting Ki-67 Expression in Breast Cancer: A Systematic Review and Meta-analysis. Acad Radiol 2024; 31:763-787. [PMID: 37925343 DOI: 10.1016/j.acra.2023.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 11/06/2023]
Abstract
RATIONALE AND OBJECTIVES The purpose of this systematic review and meta-analysis was to assess the quality and diagnostic accuracy of MRI-based radiomics for predicting Ki-67 expression in breast cancer. MATERIALS AND METHODS A systematic literature search was performed to find relevant studies published in different databases, including PubMed, Web of Science, and Embase up until March 10, 2023. All papers were independently evaluated for eligibility by two reviewers. Studies that matched research questions and provided sufficient data for quantitative synthesis were included in the systematic review and meta-analysis, respectively. The quality of the articles was assessed using Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) and Radiomics Quality Score (RQS) tools. The predictive value of MRI-based radiomics for Ki-67 antigen in patients with breast cancer was assessed using pooled sensitivity (SEN), specificity, and area under the curve (AUC). Meta-regression was performed to explore the cause of heterogeneity. Different covariates were used for subgroup analysis. RESULTS 31 studies were included in the systematic review; among them, 21 reported sufficient data for meta-analysis. 20 training cohorts and five validation cohorts were pooled separately. The pooled sensitivity, specificity, and AUC of MRI-based radiomics for predicting Ki-67 expression in training cohorts were 0.80 [95% CI, 0.73-0.86], 0.82 [95% CI, 0.78-0.86], and 0.88 [95%CI, 0.85-0.91], respectively. The corresponding values for validation cohorts were 0.81 [95% CI, 0.72-0.87], 0.73 [95% CI, 0.62-0.82], and 0.84 [95%CI, 0.80-0.87], respectively. Based on QUADAS-2, some risks of bias were detected for reference standard and flow and timing domains. However, the quality of the included article was acceptable. The mean RQS score of the included articles was close to 6, corresponding to 16.6% of the maximum possible score. Significant heterogeneity was observed in pooled sensitivity and specificity of training cohorts (I2 > 75%). We found that using deep learning radiomic methods, magnetic field strength (3 T vs. 1.5 T), scanner manufacturer, region of interest structure (2D vs. 3D), route of tissue sampling, Ki-67 cut-off, logistic regression for model construction, and LASSO for feature reduction as well as PyRadiomics software for feature extraction had a great impact on heterogeneity according to our joint model analysis. Diagnostic performance in studies that used deep learning-based radiomics and multiple MRI sequences (e.g., DWI+DCE) was slightly higher. In addition, radiomic features derived from DWI sequences performed better than contrast-enhanced sequences in terms of specificity and sensitivity. No publication bias was found based on Deeks' funnel plot. Sensitivity analysis showed that eliminating every study one by one does not impact overall results. CONCLUSION This meta-analysis showed that MRI-based radiomics has a good diagnostic accuracy in differentiating breast cancer patients with high Ki-67 expression from low-expressing groups. However, the sensitivity and specificity of these methods still do not surpass 90%, restricting them from being used as a supplement to current pathological assessments (e.g., biopsy or surgery) to predict Ki-67 expression accurately.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H.); Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.); Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.)
| | - Zanyar HajiEsmailPoor
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H.); Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.); Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.); Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.)
| | - Fariba Pashazadeh
- Research Center for Evidence-Based Medicine, Iranian Evidence-Based Medicine (EBM) Centre: A Joanna Briggs Institute (JBI) Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (F.P.)
| | - Leili Aghebati Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.); Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.).
| |
Collapse
|
3
|
Zhang L, Fan M, Li L. Deconvolution-Based Pharmacokinetic Analysis to Improve the Prediction of Pathological Information of Breast Cancer. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:13-24. [PMID: 38343210 DOI: 10.1007/s10278-023-00915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 03/02/2024]
Abstract
Pharmacokinetic (PK) parameters, revealing changes in the tumor microenvironment, are related to the pathological information of breast cancer. Tracer kinetic models (e.g., Tofts-Kety model) with a nonlinear least square solver are commonly used to estimate PK parameters. However, the method is sensitive to noise in images. To relieve the effects of noise, a deconvolution (DEC) method, which was validated on synthetic concentration-time series, was proposed to accurately calculate PK parameters from breast dynamic contrast-enhanced magnetic resonance imaging. A time-to-peak-based tumor partitioning method was used to divide the whole tumor into three tumor subregions with different kinetic patterns. Radiomic features were calculated from the tumor subregion and whole tumor-based PK parameter maps. The optimal features determined by the fivefold cross-validation method were used to build random forest classifiers to predict molecular subtypes, Ki-67, and tumor grade. The diagnostic performance evaluated by the area under the receiver operating characteristic curve (AUC) was compared between the subregion and whole tumor-based PK parameters. The results showed that the DEC method obtained more accurate PK parameters than the Tofts method. Moreover, the results showed that the subregion-based Ktrans (best AUCs = 0.8319, 0.7032, 0.7132, 0.7490, 0.8074, and 0.6950) achieved a better diagnostic performance than the whole tumor-based Ktrans (AUCs = 0.8222, 0.6970, 0.6511, 0.7109, 0.7620, and 0.5894) for molecular subtypes, Ki-67, and tumor grade. These findings indicate that DEC-based Ktrans in the subregion has the potential to accurately predict molecular subtypes, Ki-67, and tumor grade.
Collapse
Affiliation(s)
- Liangliang Zhang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China
- School of Computer and Information, Anqing Normal University, Anqing, 246133, China
| | - Ming Fan
- Institute of Intelligent Biomedicine, School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Lihua Li
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China.
- Institute of Intelligent Biomedicine, School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Zhang L, Fan M, Li L. Efficient estimation of pharmacokinetic parameters from breast dynamic contrast-enhanced MRI based on a convolutional neural network for predicting molecular subtypes. Phys Med Biol 2023; 68:245001. [PMID: 37983902 DOI: 10.1088/1361-6560/ad0e39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Objective. Tracer kinetic models allow for estimating pharmacokinetic (PK) parameters, which are related to pathological characteristics, from breast dynamic contrast-enhanced magnetic resonance imaging. However, existing tracer kinetic models subject to inaccuracy are time-consuming for PK parameters estimation. This study aimed to accurately and efficiently estimate PK parameters for predicting molecular subtypes based on convolutional neural network (CNN).Approach. A CNN integrating global and local features (GL-CNN) was trained using synthetic data where known PK parameters map was used as the ground truth, and subsequently used to directly estimate PK parameters (volume transfer constantKtransand flux rate constantKep) map. The accuracy assessed by the peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and concordance correlation coefficient (CCC) was compared between the GL-CNN and Tofts-based PK parameters in synthetic data. Radiomic features were calculated from the PK parameters map in 208 breast tumors. A random forest classifier was constructed to predict molecular subtypes using a discovery cohort (n= 144). The diagnostic performance evaluated on a validation cohort (n= 64) using the area under the receiver operating characteristic curve (AUC) was compared between the GL-CNN and Tofts-based PK parameters.Main results. The average PSNR (48.8884), SSIM (0.9995), and CCC (0.9995) between the GL-CNN-basedKtransmap and ground truth were significantly higher than those between the Tofts-basedKtransmap and ground truth. The GL-CNN-basedKtransobtained significantly better diagnostic performance (AUCs = 0.7658 and 0.8528) than the Tofts-basedKtransfor luminal B and HER2 tumors. The GL-CNN method accelerated the computation by speed approximately 79 times compared to the Tofts method for the whole breast of all patients.Significance. Our results indicate that the GL-CNN method can be used to accurately and efficiently estimate PK parameters for predicting molecular subtypes.
Collapse
Affiliation(s)
- Liangliang Zhang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
- School of Computer and Information, Anqing Normal University, Anqing, 246133, People's Republic of China
| | - Ming Fan
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Lihua Li
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| |
Collapse
|
5
|
Campana A, Gandomkar Z, Giannotti N, Reed W. The use of radiomics in magnetic resonance imaging for the pre-treatment characterisation of breast cancers: A scoping review. J Med Radiat Sci 2023; 70:462-478. [PMID: 37534540 PMCID: PMC10715343 DOI: 10.1002/jmrs.709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Radiomics is an emerging field that aims to extract and analyse a comprehensive set of quantitative features from medical images. This scoping review is focused on MRI-based radiomic features for the molecular profiling of breast tumours and the implications of this work for predicting patient outcomes. A thorough systematic literature search and outcome extraction were performed to identify relevant studies published in MEDLINE/PubMed (National Centre for Biotechnology Information), EMBASE and Scopus from 2015 onwards. The following information was retrieved from each article: study purpose, study design, extracted radiomic features, machine learning technique(s), sample size/characteristics, statistical result(s) and implications on patient outcomes. Based on the study purpose, four key themes were identified in the included 63 studies: tumour subtype classification (n = 35), pathologically complete response (pCR) prediction (n = 15), lymph node metastasis (LNM) detection (n = 7) and recurrence rate prediction (n = 6). In all four themes, reported accuracies widely varied among the studies, for example, area under receiver characteristics curve (AUC) for detecting LNM ranged from 0.72 to 0.91 and the AUC for predicting pCR ranged from 0.71 to 0.99. In all four themes, combining radiomic features with clinical data improved the predictive models. Preliminary results of this study showed radiomics potential to characterise the whole tumour heterogeneity, with clear implications for individual-targeted treatment. However, radiomics is still in the pre-clinical phase, currently with an insufficient number of large multicentre studies and those existing studies are often limited by insufficient methodological transparency and standardised workflow. Consequently, the clinical translation of existing studies is currently limited.
Collapse
Affiliation(s)
- Annalise Campana
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Ziba Gandomkar
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Nicola Giannotti
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Warren Reed
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
6
|
Wang M, Mei T, Gong Y. The quality and clinical translation of radiomics studies based on MRI for predicting Ki-67 levels in patients with breast cancer. Br J Radiol 2023; 96:20230172. [PMID: 37724784 PMCID: PMC10546437 DOI: 10.1259/bjr.20230172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/13/2023] [Accepted: 08/02/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVE To evaluate the methodological quality of radiomics literature predicting Ki-67 levels based on MRI in patients with breast cancer (BC) and to propose suggestions for clinical translation. METHODS In this review, we searched PubMed, Embase, and Web of Science for studies published on radiomics in patients with BC. We evaluated the methodological quality of the studies using the Radiomics Quality Score (RQS). The Cochrane Collaboration's software (RevMan 5.4), Meta-DiSc (v. 1.4) and IBM SPSS (v. 26.0) were used for all statistical analyses. RESULTS Eighteen studies met our inclusion criteria, and the average RQS was 10.17 (standard deviation [SD]: 3.54). None of these studies incorporated any of the following items: a phantom study on all scanners, cut-off analyses, prospective study, cost-effectiveness analysis, or open science and data. In the meta-analysis, it showed apparent diffusion coefficient (ADC) played a better role to predict Ki-67 level than dynamic contrast-enhanced (DCE) MRI in the radiomics, with the pooled area under the curve (AUC) of 0.969. CONCLUSION Ki-67 index is a common tumor biomarker with high clinical value. Radiomics is an ever-growing quantitative data-mining method helping predict tumor biomarkers from medical images. However, the quality of the reviewed studies evaluated by the RQS was not so satisfactory and there are ample opportunities for improvement. Open science and data, external validation, phantom study, publicly open radiomics database and standardization in the radiomics practice are what researchers should pay more attention to in the future. ADVANCES IN KNOWLEDGE The RQS tool considered the radiomics used to predict the Ki-67 level was of poor quality. ADC performed better than DCE in radiomic prediction. We propose some measures to facilitate the clinical translation of radiomics.
Collapse
Affiliation(s)
- Min Wang
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Mei
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Youling Gong
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Feng S, Yin J. Dynamic contrast-enhanced magnetic resonance imaging radiomics analysis based on intratumoral subregions for predicting luminal and nonluminal breast cancer. Quant Imaging Med Surg 2023; 13:6735-6749. [PMID: 37869317 PMCID: PMC10585575 DOI: 10.21037/qims-22-1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 08/14/2023] [Indexed: 10/24/2023]
Abstract
Background Breast cancer is a heterogeneous disease with different morphological and biological characteristics. The molecular subtypes of breast cancer are closely related to the treatment and prognosis of patients. In order to predict the luminal type of breast cancer in a noninvasive manner, our study developed and validated a radiomics nomogram combining clinical factors with a radiomics score based on the features of the intratumoral subregion to distinguish between luminal and nonluminal breast cancer. Methods From January 2018 to January 2020, 153 women with clinically and pathologically diagnosed breast cancer with an average age of 50.08 years were retrospectively analyzed. Using a semiautomatic segmentation method, the whole tumor was divided into 3 subregions on the basis of the time required for the contrast agent to reach its peak; 540 features were extracted from 3 subregions and the whole tumor region. Subsequently, 2 machine learning classifiers were developed. The least absolute shrinkage and selection operator method was used for feature selection and radiomics score (Rad-score) construction. Moreover, multivariable logistic regression analysis was applied to select independent factors from the Rad-score and clinical factors to establish a prediction model in the form of a nomogram. The performance of the nomogram was evaluated through calibration, discrimination, and clinical usefulness. Results The prediction performance of texture features from the rapid subregion was the best in the 3 intratumoral subregions, and the area under the receiver operating characteristic curve (AUC) values in the training and validation cohort were 0.805 (95% CI: 0.719-0.892) and 0.737 (95% CI: 0.581-0.893), respectively. The Rad-score, consisting of 5 features from the rapid subregion, was associated with the luminal type of breast cancer (P=0.001 and P=0.035 in the training and validation cohorts, respectively). The predictors included in the personalized prediction nomogram included Rad-score, human epidermal growth factor receptor 2 (HER2) status, and tumor histological grade. The nomogram showed good discrimination, with an area under the receiver operating characteristic curve in the training and validation cohorts of 0.830 (95% CI: 0.746-0.896) and 0.879 (95% CI: 0.748-0.957), respectively. The calibration curve of the 2 cohorts and decision curve analysis demonstrated that the nomogram had good calibration and clinical usefulness. Conclusions We proposed a nomogram model that combined clinical factors and Rad-score, which showed good performance in predicting the luminal type of breast cancer.
Collapse
Affiliation(s)
- Shuqian Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiandong Yin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Monti S, Truppa ME, Albanese S, Mancini M. Radiomics and Radiogenomics in Preclinical Imaging on Murine Models: A Narrative Review. J Pers Med 2023; 13:1204. [PMID: 37623455 PMCID: PMC10455673 DOI: 10.3390/jpm13081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Over the past decade, medical imaging technologies have become increasingly significant in both clinical and preclinical research, leading to a better understanding of disease processes and the development of new diagnostic and theranostic methods. Radiomic and radiogenomic approaches have furthered this progress by exploring the relationship between imaging characteristics, genomic information, and outcomes that qualitative interpretations may have overlooked, offering valuable insights for personalized medicine. Preclinical research allows for a controlled environment where various aspects of a pathology can be replicated in animal models, providing radiomic and radiogenomic approaches with the unique opportunity to investigate the causal connection between imaging and molecular factors. The aim of this review is to present the current state of the art in the application of radiomics and radiogenomics on murine models. This review will provide a brief description of relevant articles found in the literature with a discussion on the implications and potential translational relevance of these findings.
Collapse
Affiliation(s)
| | | | - Sandra Albanese
- National Research Council, Institute of Biostructures and Bioimaging, 80145 Naples, Italy; (S.M.); (M.E.T.); (M.M.)
| | | |
Collapse
|
9
|
Bellini D, Milan M, Bordin A, Rizzi R, Rengo M, Vicini S, Onori A, Carbone I, De Falco E. A Focus on the Synergy of Radiomics and RNA Sequencing in Breast Cancer. Int J Mol Sci 2023; 24:ijms24087214. [PMID: 37108377 PMCID: PMC10138689 DOI: 10.3390/ijms24087214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Radiological imaging is currently employed as the most effective technique for screening, diagnosis, and follow up of patients with breast cancer (BC), the most common type of tumor in women worldwide. However, the introduction of the omics sciences such as metabolomics, proteomics, and molecular genomics, have optimized the therapeutic path for patients and implementing novel information parallel to the mutational asset targetable by specific clinical treatments. Parallel to the "omics" clusters, radiological imaging has been gradually employed to generate a specific omics cluster termed "radiomics". Radiomics is a novel advanced approach to imaging, extracting quantitative, and ideally, reproducible data from radiological images using sophisticated mathematical analysis, including disease-specific patterns, that could not be detected by the human eye. Along with radiomics, radiogenomics, defined as the integration of "radiology" and "genomics", is an emerging field exploring the relationship between specific features extracted from radiological images and genetic or molecular traits of a particular disease to construct adequate predictive models. Accordingly, radiological characteristics of the tissue are supposed to mimic a defined genotype and phenotype and to better explore the heterogeneity and the dynamic evolution of the tumor over the time. Despite such improvements, we are still far from achieving approved and standardized protocols in clinical practice. Nevertheless, what can we learn by this emerging multidisciplinary clinical approach? This minireview provides a focused overview on the significance of radiomics integrated by RNA sequencing in BC. We will also discuss advances and future challenges of such radiomics-based approach.
Collapse
Affiliation(s)
- Davide Bellini
- Department of Radiological Sciences, Oncology and Pathology, I.C.O.T. Hospital, Sapienza University of Rome, Via Franco Faggiana 1668, 04100 Latina, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Marika Milan
- UOC Neurology, Fondazione Ca'Granda, Ospedale Maggiore Policlinico, Via F. Sforza, 28, 20122 Milan, Italy
| | - Antonella Bordin
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Roberto Rizzi
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Marco Rengo
- Department of Radiological Sciences, Oncology and Pathology, I.C.O.T. Hospital, Sapienza University of Rome, Via Franco Faggiana 1668, 04100 Latina, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Simone Vicini
- Department of Radiological Sciences, Oncology and Pathology, I.C.O.T. Hospital, Sapienza University of Rome, Via Franco Faggiana 1668, 04100 Latina, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Alessandro Onori
- Department of Radiological Sciences, Oncology and Pathology, I.C.O.T. Hospital, Sapienza University of Rome, Via Franco Faggiana 1668, 04100 Latina, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Iacopo Carbone
- Department of Radiological Sciences, Oncology and Pathology, I.C.O.T. Hospital, Sapienza University of Rome, Via Franco Faggiana 1668, 04100 Latina, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| |
Collapse
|
10
|
Miller MM, Rubaiyat AHM, Rohde GK. Predicting Malignancy of Breast Imaging Findings Using Quantitative Analysis of Contrast-Enhanced Mammography (CEM). Diagnostics (Basel) 2023; 13:diagnostics13061129. [PMID: 36980437 PMCID: PMC10047016 DOI: 10.3390/diagnostics13061129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
We sought to develop new quantitative approaches to characterize the spatial distribution of mammographic density and contrast enhancement of suspicious contrast-enhanced mammography (CEM) findings to improve malignant vs. benign classifications of breast lesions. We retrospectively analyzed all breast lesions that underwent CEM imaging and tissue sampling at our institution from 2014–2020 in this IRB-approved study. A penalized linear discriminant analysis was used to classify lesions based on the averaged histograms of radial distributions of mammographic density and contrast enhancement. T-tests were used to compare the classification accuracies of density, contrast, and concatenated density and contrast histograms. Logistic regression and AUC-ROC analyses were used to assess if adding demographic and clinical data improved the model accuracy. A total of 159 suspicious findings were evaluated. Density histograms were more accurate in classifying lesions as malignant or benign than a random classifier (62.37% vs. 48%; p < 0.001), but the concatenated density and contrast histograms demonstrated a higher accuracy (71.25%; p < 0.001) than the density histograms alone. Including the demographic and clinical data in our models led to a higher AUC-ROC than concatenated density and contrast images (0.81 vs. 0.70; p < 0.001). In the classification of invasive vs. non-invasive malignancy, the concatenated density and contrast histograms demonstrated no significant improvement in accuracy over the density histograms alone (77.63% vs. 78.59%; p = 0.504). Our findings suggest that quantitative differences in the radial distribution of mammographic density could be used to discriminate malignant from benign breast findings; however, classification accuracy was significantly improved with the addition of contrast-enhanced imaging data from CEM. Adding patient demographic and clinical information further improved the classification accuracy.
Collapse
Affiliation(s)
- Matthew M. Miller
- Department of Radiology and Medical Imaging, University of Virginia Health System, 1215 Lee St., Charlottesville, VA 22903, USA
- Correspondence:
| | - Abu Hasnat Mohammad Rubaiyat
- Department of Electrical and Computer Engineering, University of Virginia, 415 Lane Rd., Charlottesville, VA 22903, USA
| | - Gustavo K. Rohde
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd., Charlottesville, VA 22903, USA
| |
Collapse
|
11
|
Brancato V, Brancati N, Esposito G, La Rosa M, Cavaliere C, Allarà C, Romeo V, De Pietro G, Salvatore M, Aiello M, Sangiovanni M. A Two-Step Feature Selection Radiomic Approach to Predict Molecular Outcomes in Breast Cancer. SENSORS (BASEL, SWITZERLAND) 2023; 23:1552. [PMID: 36772592 PMCID: PMC9921618 DOI: 10.3390/s23031552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Breast Cancer (BC) is the most common cancer among women worldwide and is characterized by intra- and inter-tumor heterogeneity that strongly contributes towards its poor prognosis. The Estrogen Receptor (ER), Progesterone Receptor (PR), Human Epidermal Growth Factor Receptor 2 (HER2), and Ki67 antigen are the most examined markers depicting BC heterogeneity and have been shown to have a strong impact on BC prognosis. Radiomics can noninvasively predict BC heterogeneity through the quantitative evaluation of medical images, such as Magnetic Resonance Imaging (MRI), which has become increasingly important in the detection and characterization of BC. However, the lack of comprehensive BC datasets in terms of molecular outcomes and MRI modalities, and the absence of a general methodology to build and compare feature selection approaches and predictive models, limit the routine use of radiomics in the BC clinical practice. In this work, a new radiomic approach based on a two-step feature selection process was proposed to build predictors for ER, PR, HER2, and Ki67 markers. An in-house dataset was used, containing 92 multiparametric MRIs of patients with histologically proven BC and all four relevant biomarkers available. Thousands of radiomic features were extracted from post-contrast and subtracted Dynamic Contrast-Enanched (DCE) MRI images, Apparent Diffusion Coefficient (ADC) maps, and T2-weighted (T2) images. The two-step feature selection approach was used to identify significant radiomic features properly and then to build the final prediction models. They showed remarkable results in terms of F1-score for all the biomarkers: 84%, 63%, 90%, and 72% for ER, HER2, Ki67, and PR, respectively. When possible, the models were validated on the TCGA/TCIA Breast Cancer dataset, returning promising results (F1-score = 88% for the ER+/ER- classification task). The developed approach efficiently characterized BC heterogeneity according to the examined molecular biomarkers.
Collapse
Affiliation(s)
- Valentina Brancato
- IRCCS SYNLAB SDN, Istituto di Ricerca Diagnostica e Nucleare, Via E. Gianturco 113, 80143 Naples, Italy
| | - Nadia Brancati
- Institute for High Performance Computing and Networking, National Research Council of Italy (ICAR-CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Giusy Esposito
- Bio Check Up S.r.l., Via Riviera di Chiaia 9a, 80122 Naples, Italy
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Massimo La Rosa
- Institute for High Performance Computing and Networking, National Research Council of Italy (ICAR-CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Carlo Cavaliere
- IRCCS SYNLAB SDN, Istituto di Ricerca Diagnostica e Nucleare, Via E. Gianturco 113, 80143 Naples, Italy
| | - Ciro Allarà
- Bio Check Up S.r.l., Via Riviera di Chiaia 9a, 80122 Naples, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe De Pietro
- Institute for High Performance Computing and Networking, National Research Council of Italy (ICAR-CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Marco Salvatore
- IRCCS SYNLAB SDN, Istituto di Ricerca Diagnostica e Nucleare, Via E. Gianturco 113, 80143 Naples, Italy
| | - Marco Aiello
- IRCCS SYNLAB SDN, Istituto di Ricerca Diagnostica e Nucleare, Via E. Gianturco 113, 80143 Naples, Italy
| | - Mara Sangiovanni
- Institute for High Performance Computing and Networking, National Research Council of Italy (ICAR-CNR), Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
12
|
Sminia P, Guipaud O, Viktorsson K, Ahire V, Baatout S, Boterberg T, Cizkova J, Dostál M, Fernandez-Palomo C, Filipova A, François A, Geiger M, Hunter A, Jassim H, Edin NFJ, Jordan K, Koniarová I, Selvaraj VK, Meade AD, Milliat F, Montoro A, Politis C, Savu D, Sémont A, Tichy A, Válek V, Vogin G. Clinical Radiobiology for Radiation Oncology. RADIOBIOLOGY TEXTBOOK 2023:237-309. [DOI: 10.1007/978-3-031-18810-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
AbstractThis chapter is focused on radiobiological aspects at the molecular, cellular, and tissue level which are relevant for the clinical use of ionizing radiation (IR) in cancer therapy. For radiation oncology, it is critical to find a balance, i.e., the therapeutic window, between the probability of tumor control and the probability of side effects caused by radiation injury to the healthy tissues and organs. An overview is given about modern precision radiotherapy (RT) techniques, which allow optimal sparing of healthy tissues. Biological factors determining the width of the therapeutic window are explained. The role of the six typical radiobiological phenomena determining the response of both malignant and normal tissues in the clinic, the 6R’s, which are Reoxygenation, Redistribution, Repopulation, Repair, Radiosensitivity, and Reactivation of the immune system, is discussed. Information is provided on tumor characteristics, for example, tumor type, growth kinetics, hypoxia, aberrant molecular signaling pathways, cancer stem cells and their impact on the response to RT. The role of the tumor microenvironment and microbiota is described and the effects of radiation on the immune system including the abscopal effect phenomenon are outlined. A summary is given on tumor diagnosis, response prediction via biomarkers, genetics, and radiomics, and ways to selectively enhance the RT response in tumors. Furthermore, we describe acute and late normal tissue reactions following exposure to radiation: cellular aspects, tissue kinetics, latency periods, permanent or transient injury, and histopathology. Details are also given on the differential effect on tumor and late responding healthy tissues following fractionated and low dose rate irradiation as well as the effect of whole-body exposure.
Collapse
|
13
|
Precision Medicine in Radiomics and Radiogenomics. J Pers Med 2022; 12:jpm12111806. [PMID: 36579529 PMCID: PMC9692256 DOI: 10.3390/jpm12111806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Precision medicine is an innovative and emerging approach to treatment that accounts for individual variability in genetic and environmental factors to identify and utilize the specific biomedical profile of a patient's disease [...].
Collapse
|
14
|
Multiregional Radiomic Signatures Based on Functional Parametric Maps from DCE-MRI for Preoperative Identification of Estrogen Receptor and Progesterone Receptor Status in Breast Cancer. Diagnostics (Basel) 2022; 12:diagnostics12102558. [PMID: 36292247 PMCID: PMC9601361 DOI: 10.3390/diagnostics12102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Radiomics based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been used for breast estrogen receptor (ER) and progesterone receptor (PR) status evaluation. However, the radiomic features of peritumoral regions were not thoroughly analyzed. This study aimed to establish and validate the multiregional radiomic signatures (RSs) for the preoperative identification of the ER and PR status in breast cancer. A total of 443 patients with breast cancer were divided into training (n = 356) and validation (n = 87) sets. Radiomic features were extracted from intra- and peritumoral regions on six functional parametric maps from DCE-MRI. A two-sample t-test, least absolute shrinkage and selection operator regression, and stepwise were used for feature selections. Three RSs for predicting the ER and PR status were constructed using a logistic regression model based on selected intratumoral, peritumoral, and combined intra- and peritumoral radiomic features. The area under the receiver operator characteristic curve (AUC) was used to assess the discriminative performance of three RSs. The AUCs of intra- and peritumoral RSs for identifying the ER status were 0.828/0.791 and 0.755/0.733 in the training and validation sets, respectively. For predicting the PR status, intra- and peritumoral RSs resulted in AUCs of 0.816/0.749 and 0.806/0.708 in the training and validation sets, respectively. Multiregional RSs achieved the best AUCs among three RSs for evaluating the ER (0.851 and 0.833) and PR (0.848 and 0.763) status. In conclusion, multiregional RSs based on functional parametric maps from DCE-MRI showed promising results for preoperatively evaluating the ER and PR status in breast cancer patients. Further studies using a larger cohort from multiple centers are necessary to confirm the reliability of the established models before clinical application.
Collapse
|
15
|
Sun S, Ren L, Miao Z, Hua L, Wang D, Deng J, Chen J, Liu N, Gong Y. Application of MRI-Based Radiomics in Preoperative Prediction of NF2 Alteration in Intracranial Meningiomas. Front Oncol 2022; 12:879528. [PMID: 36267986 PMCID: PMC9578175 DOI: 10.3389/fonc.2022.879528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThis study aimed to investigate the feasibility of predicting NF2 mutation status based on the MR radiomic analysis in patients with intracranial meningioma.MethodsThis retrospective study included 105 patients with meningiomas, including 60 NF2-mutant samples and 45 wild-type samples. Radiomic features were extracted from magnetic resonance imaging scans, including T1-weighted, T2-weighted, and contrast T1-weighted images. Student’s t-test and LASSO regression were performed to select the radiomic features. All patients were randomly divided into training and validation cohorts in a 7:3 ratio. Five linear models (RF, SVM, LR, KNN, and xgboost) were trained to predict the NF2 mutational status. Receiver operating characteristic curve and precision-recall analyses were used to evaluate the model performance. Student’s t-tests were then used to compare the posterior probabilities of NF2 mut/loss prediction for patients with different NF2 statuses.ResultsNine features had nonzero coefficients in the LASSO regression model. No significant differences was observed in the clinical features. Nine features showed significant differences in patients with different NF2 statuses. Among all machine learning algorithms, SVM showed the best performance. The area under curve and accuracy of the predictive model were 0.85; the F1-score of the precision-recall curve was 0.80. The model risk was assessed by plotting calibration curves. The p-value for the H-L goodness of fit test was 0.411 (p> 0.05), which indicated that the difference between the obtained model and the perfect model was statistically insignificant. The AUC of our model in external validation was 0.83.ConclusionA combination of radiomic analysis and machine learning showed potential clinical utility in the prediction of preoperative NF2 status. These findings could aid in developing customized neurosurgery plans and meningioma management strategies before postoperative pathology.
Collapse
Affiliation(s)
- Shuchen Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Leihao Ren
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Zong Miao
- Department of Neurosurgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Daijun Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Jiawei Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Ning Liu
- Department of Neurosurgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Ye Gong,
| |
Collapse
|
16
|
Sheng W, Xia S, Wang Y, Yan L, Ke S, Mellisa E, Gong F, Zheng Y, Tang T. Invasive ductal breast cancer molecular subtype prediction by MRI radiomic and clinical features based on machine learning. Front Oncol 2022; 12:964605. [PMID: 36172153 PMCID: PMC9510620 DOI: 10.3389/fonc.2022.964605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMost studies of molecular subtype prediction in breast cancer were mainly based on two-dimensional MRI images, the predictive value of three-dimensional volumetric features from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for predicting breast cancer molecular subtypes has not been thoroughly investigated. This study aimed to look into the role of features derived from DCE-MRI and how they could be combined with clinical data to predict invasive ductal breast cancer molecular subtypes.MethodsFrom January 2019 to December 2021, 190 Chinese women with invasive ductal breast cancer were studied (32 triple-negative, 59 HER2-enriched, and 99 luminal lesions) in this institutional review board-approved retrospective cohort study. The image processing software extracted 1130 quantitative radiomic features from the segmented lesion area, including shape-based, first-order statistical, texture, and wavelet features. Three binary classifications of the subtypes were performed: triple-negative vs. non-triple-negative, HER2-overexpressed vs. non-HER2-overexpressed, and luminal (A + B) vs. non-luminal. For the classification, five machine learning methods (random forest, logistic regression, support vector machine, naïve Bayes, and eXtreme Gradient Boosting) were employed. The classifiers were chosen using the least absolute shrinkage and selection operator method. The area evaluated classification performance under the receiver operating characteristic curve, sensitivity, specificity, accuracy, F1-Score, false positive rate, precision, and geometric mean.ResultsEXtreme Gradient Boosting model showed the best performance in luminal and non-luminal groups, with AUC, sensitivity, specificity, accuracy, F1-Score, false positive rate, precision, and geometric mean of 0.8282, 0.7524, 0.6542, 0.6964, 0.6086, 0.3458, 0.8524 and 0.7016, respectively. Meanwhile, the random forest model showed the best performance in HER2-overexpressed and non-HER2-overexpressed groups, with AUC, sensitivity, specificity, accuracy, F1-Score, false positive rate, precision, and geometric mean of 0.8054, 0.2941, 0.9744, 0.7679, 0.4348, 0.0256, 0.8333 and 0.5353, respectively. Furthermore, eXtreme Gradient Boosting model showed the best performance in the triple-negative and non-triple-negative groups, with AUC, sensitivity, specificity, accuracy, F1-Score, false positive rate, precision, and geometric mean of 0.9031, 0.9362, 0.4444, 0.8571, 0.9167, 0.5556, 0.8980 and 0.6450.ConclusionClinical data and three-dimension imaging features from DCE-MRI were identified as potential biomarkers for distinguishing between three molecular subtypes of invasive ductal carcinomas breast cancer. In the future, more extensive studies will be required to evaluate the findings.
Collapse
Affiliation(s)
- Weiyong Sheng
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Shouli Xia
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaru Wang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lizhao Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songqing Ke
- Department of Science and Technology Research Management, Wuhan Blood Center, Wuhan, China
| | - Evelyn Mellisa
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fen Gong
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun Zheng
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Yun Zheng, ; Tiansheng Tang,
| | - Tiansheng Tang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
- *Correspondence: Yun Zheng, ; Tiansheng Tang,
| |
Collapse
|
17
|
Zhang L, Fan M, Wang S, Xu M, Li L. Radiomic Analysis of Pharmacokinetic Heterogeneity Within Tumor Based on the Unsupervised Decomposition of Dynamic Contrast-Enhanced MRI for Predicting Histological Characteristics of Breast Cancer. J Magn Reson Imaging 2021; 55:1636-1647. [PMID: 34773446 DOI: 10.1002/jmri.27993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast tumor heterogeneity is associated with histological characteristics. However, pharmacokinetic (PK) heterogeneity within tumor might merit further exploration. PURPOSE To enhance the predictive power of molecular subtypes, Ki-67, and tumor grade by analyzing PK heterogeneity within tumor based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). STUDY TYPE Retrospective. POPULATION Two hundred and eight biopsy-proven breast cancer patients, randomly divided into a training cohort (N = 144) and a testing cohort (N = 64). FIELD STRENGTH/SEQUENCE T1 -weighted DCE-MRI at 3.0 T. ASSESSMENT A convex analysis of mixtures-compartmental modeling decomposition method was used to estimate the PK parameter (i.e., the volume transfer constant Ktrans ) in tumor subregions with distinct physiological kinetic patterns, including fast-flow kinetics, slow-flow kinetics, and plasma input. Radiomic features based on the PK parameter were calculated from each tumor subregion. STATISTICAL TESTS The training cohort was used to build random forest classifiers based on the optimal features determined by the 5-fold cross-validation method. The performance was assessed on the testing cohort using the area under the receiver operating characteristic curve (AUC). The AUCs derived from the tumor subregion-based PK parameter were compared with those of the original images of the entire tumor using the DeLong test. A P-value of <0.05 was considered statistically significant. RESULTS The tumor subregion-based PK parameter, which yielded the highest AUCs of 0.8782, 0.7568, 0.7019, 0.7963, 0.8080, and 0.7375 for luminal A, luminal B, basal-like, human epidermal growth factor receptor 2, Ki-67, and tumor grade, respectively, obtained better diagnostic performance than the original images in the entire tumor (highest AUCs = 0.8612, 0.6191, 0.5593, 0.7704, 0.7494, and 0.6261, respectively). In particular, statistically significant improvement in the diagnostic performance was obtained for luminal B. DATA CONCLUSION Radiomic analysis of PK heterogeneity within tumor can enhance the predictive performance of radiomic models compared with that of the entire tumor. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Liangliang Zhang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China
| | - Ming Fan
- Institute of Biomedical Engineering and Instrumentation, School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Shiwei Wang
- Department of Radiology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Maosheng Xu
- Department of Radiology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lihua Li
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China.,Institute of Biomedical Engineering and Instrumentation, School of Automation, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
18
|
Satake H, Ishigaki S, Ito R, Naganawa S. Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence. Radiol Med 2021; 127:39-56. [PMID: 34704213 DOI: 10.1007/s11547-021-01423-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Breast magnetic resonance imaging (MRI) is the most sensitive imaging modality for breast cancer diagnosis and is widely used clinically. Dynamic contrast-enhanced MRI is the basis for breast MRI, but ultrafast images, T2-weighted images, and diffusion-weighted images are also taken to improve the characteristics of the lesion. Such multiparametric MRI with numerous morphological and functional data poses new challenges to radiologists, and thus, new tools for reliable, reproducible, and high-volume quantitative assessments are warranted. In this context, radiomics, which is an emerging field of research involving the conversion of digital medical images into mineable data for clinical decision-making and outcome prediction, has been gaining ground in oncology. Recent development in artificial intelligence has promoted radiomics studies in various fields including breast cancer treatment and numerous studies have been conducted. However, radiomics has shown a translational gap in clinical practice, and many issues remain to be solved. In this review, we will outline the steps of radiomics workflow and investigate clinical application of radiomics focusing on breast MRI based on published literature, as well as current discussion about limitations and challenges in radiomics.
Collapse
Affiliation(s)
- Hiroko Satake
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Satoko Ishigaki
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
19
|
Davey MG, Davey MS, Boland MR, Ryan ÉJ, Lowery AJ, Kerin MJ. Radiomic differentiation of breast cancer molecular subtypes using pre-operative breast imaging - A systematic review and meta-analysis. Eur J Radiol 2021; 144:109996. [PMID: 34624649 DOI: 10.1016/j.ejrad.2021.109996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/17/2021] [Accepted: 09/30/2021] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Breast cancer has four distinct molecular subtypes which are discriminated using gene expression profiling following biopsy. Radiogenomics is an emerging field which utilises diagnostic imaging to reveal genomic properties of disease. We aimed to perform a systematic review of the current literature to evaluate the value radiomics in differentiating breast cancers into their molecular subtypes using diagnostic imaging. METHODS A systematic review was performed as per PRISMA guidelines. Studies assessing radiomictumour analysis in differentiatingbreast cancer molecular subtypeswere included. Quality was assessed using the radiomics quality score (RQS). Diagnostic sensitivity and specificity of radiomic analyses were included for meta-analysis; Study specific sensitivity and specificity were retrieved and summary ROC analysis were performed to compile pooled sensitivities and specificities. RESULTS Forty-one studies were included. Overall, there were 10,090 female patients (mean age of 47.6 ± 11.7 years, range: 21-93) and molecular subtypewas reported in 7,693 of cases, with Luminal A (LABC), Luminal B (LBBC), Human Epidermal Growth Factor Receptor-2 overexpressing (HER2+), and Triple Negative (TNBC) breast cancers representing 51.3%, 19.9%, 12.3% and 16.3% of tumour respectively. Seven studies provided radiomic analysis to determine molecular subtypes using mammography to differentiateTNBCvs.others (sensitivity: 0.82,specificity:0.79). Thirty-five studies reported on radiomic analysis of magnetic resonance imaging (MRI); LABC versus others(sensitivity:0.78,specificity:0.83),HER2+versusothers(sensitivity:0.87,specificity:0.88), andLBBCversusTNBC (sensitivity: 0.79,specificity:0.88) respectively. CONCLUSION Radiomic tumour assessment of contemporary breast imaging provide a novel option in determining breast cancer molecular subtypes. However, amelioration of such techniques are required and genetic expression assessment will remain the gold standard.
Collapse
Affiliation(s)
- Matthew G Davey
- The Lambe Institute for Translational Research, National University of Ireland, Galway H91 YR91, Ireland.
| | - Martin S Davey
- The Lambe Institute for Translational Research, National University of Ireland, Galway H91 YR91, Ireland
| | - Michael R Boland
- The Lambe Institute for Translational Research, National University of Ireland, Galway H91 YR91, Ireland
| | - Éanna J Ryan
- The Lambe Institute for Translational Research, National University of Ireland, Galway H91 YR91, Ireland
| | - Aoife J Lowery
- The Lambe Institute for Translational Research, National University of Ireland, Galway H91 YR91, Ireland
| | - Michael J Kerin
- The Lambe Institute for Translational Research, National University of Ireland, Galway H91 YR91, Ireland
| |
Collapse
|
20
|
Niu S, Jiang W, Zhao N, Jiang T, Dong Y, Luo Y, Yu T, Jiang X. Intra- and peritumoral radiomics on assessment of breast cancer molecular subtypes based on mammography and MRI. J Cancer Res Clin Oncol 2021; 148:97-106. [PMID: 34623517 DOI: 10.1007/s00432-021-03822-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE This study aimed to investigate the efficacy of digital mammography (DM), digital breast tomosynthesis (DBT), diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI separately and combined in the prediction of molecular subtypes of breast cancer. METHODS A total of 241 patients were enrolled and underwent breast MD, DBT, DW and DCE scans. Radiomics features were calculated from intra- and peritumoral regions, and selected with least absolute shrinkage and selection operator (LASSO) regression to develop radiomics signatures (RSs). Prediction performance of intra- and peritumoral regions in the four modalities were evaluated and compared with area under the receiver-operating characteristic (ROC) curve (AUC), specificity and sensitivity as comparison metrics. RESULTS The RSs derived from combined intra- and peritumoral regions improved prediction AUCs compared with those from intra- or peritumoral regions alone. DM plus DBT generated better AUCs than the DW plus DCE on predicting Luminal A and Luminal B in the training (Luminal A: 0.859 and 0.805; Luminal B: 0.773 and 0.747) and validation (Luminal A: 0.906 and 0.853; Luminal B: 0.807 and 0.784) cohort. For the prediction of HER2-enriched and TN, the DW plus DCE yielded better AUCs than the DM plus DBT in the training (HER2-enriched: 0.954 and 0.857; TN: 0.877 and 0.802) and validation (HER2-enriched: 0.974 and 0.907; TN: 0.938 and 0.874) cohort. CONCLUSIONS Peritumoral regions can provide complementary information to intratumoral regions for the prediction of molecular subtypes. Compared with MRI, the mammography showed higher AUCs for the prediction of Luminal A and B, but lower AUCs for the prediction of HER2-enriched and TN.
Collapse
Affiliation(s)
- Shuxian Niu
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, 110122, People's Republic of China
| | - Wenyan Jiang
- Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, People's Republic of China
| | - Nannan Zhao
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, People's Republic of China
| | - Tao Jiang
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yue Dong
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, People's Republic of China
| | - Yahong Luo
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, People's Republic of China
| | - Tao Yu
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, People's Republic of China.
| | - Xiran Jiang
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
21
|
La Greca Saint-Esteven A, Vuong D, Tschanz F, van Timmeren JE, Dal Bello R, Waller V, Pruschy M, Guckenberger M, Tanadini-Lang S. Systematic Review on the Association of Radiomics with Tumor Biological Endpoints. Cancers (Basel) 2021; 13:cancers13123015. [PMID: 34208595 PMCID: PMC8234501 DOI: 10.3390/cancers13123015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
Radiomics supposes an alternative non-invasive tumor characterization tool, which has experienced increased interest with the advent of more powerful computers and more sophisticated machine learning algorithms. Nonetheless, the incorporation of radiomics in cancer clinical-decision support systems still necessitates a thorough analysis of its relationship with tumor biology. Herein, we present a systematic review focusing on the clinical evidence of radiomics as a surrogate method for tumor molecular profile characterization. An extensive literature review was conducted in PubMed, including papers on radiomics and a selected set of clinically relevant and commonly used tumor molecular markers. We summarized our findings based on different cancer entities, additionally evaluating the effect of different modalities for the prediction of biomarkers at each tumor site. Results suggest the existence of an association between the studied biomarkers and radiomics from different modalities and different tumor sites, even though a larger number of multi-center studies are required to further validate the reported outcomes.
Collapse
Affiliation(s)
- Agustina La Greca Saint-Esteven
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
- Correspondence:
| | - Diem Vuong
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Fabienne Tschanz
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University of Zurich, 8091 Zurich, Switzerland; (F.T.); (V.W.); (M.P.)
| | - Janita E. van Timmeren
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Verena Waller
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University of Zurich, 8091 Zurich, Switzerland; (F.T.); (V.W.); (M.P.)
| | - Martin Pruschy
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University of Zurich, 8091 Zurich, Switzerland; (F.T.); (V.W.); (M.P.)
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| |
Collapse
|
22
|
Moyya PD, Asaithambi M. Radiomics- Quantitative Biomarker Analysis for Breast Cancer Diagnosis and Prediction: A Review. Curr Med Imaging 2021; 18:3-17. [PMID: 33655872 DOI: 10.2174/1573405617666210303102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer of the breast has become a global problem for women's health. Though concerns regarding early detection and accurate diagnosis were raised, an effort is required for precision medicine as well as personalized treatment. In the past years, the area of medicinal imaging has seen an unprecedented growth that leads to an advancement of radiomics, which provides countless quantitative biomarkers extracted from modern diagnostic images, including a detailed tumor characterization of breast malignancy. DISCUSSION In this research, we presented the methodology and implementation of radiomics, together with its future trends and challenges by the basis of published papers. Radiomics could distinguish between malignant from benign tumors, predict prognostic factors, molecular subtypes of breast carcinoma, treatment response to neoadjuvant chemotherapy (NAC), and recurrence survival. The incorporation of quantitative knowledge with clinical, histopathological and genomic information will enable physicians to afford customized care of treatment for patients with breast cancer. CONCLUSION Our research was intended to help physicians and radiologists learn fundamental knowledge about radiomics and also to work collaboratively with researchers to explore evidence for further usage in clinical practice.
Collapse
Affiliation(s)
- Priscilla Dinkar Moyya
- School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu-632014. India
| | - Mythili Asaithambi
- School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu-632014. India
| |
Collapse
|
23
|
Radiomics signature on CECT as a predictive factor for invasiveness of lung adenocarcinoma manifesting as subcentimeter ground glass nodules. Sci Rep 2021; 11:3633. [PMID: 33574448 PMCID: PMC7878798 DOI: 10.1038/s41598-021-83167-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Controversy and challenges remain regarding the cognition of lung adenocarcinomas presented as subcentimeter ground glass nodules (GGNs). Postoperative lymphatic involvement or intrapulmonary metastasis is found in approximately 15% to 20% of these cases. This study aimed to develop and validate a radiomics signature to identify the invasiveness of lung adenocarcinoma appearing as subcentimeter ground glass nodules. We retrospectively enrolled 318 subcentimeter GGNs with histopathology-confirmed adenocarcinomas in situ (AIS), minimally invasive adenocarcinomas (MIA) and invasive adenocarcinomas (IAC). The radiomics features were extracted from manual segmentation based on contrast-enhanced CT (CECT) and non-contrast enhanced CT (NCECT) images after imaging preprocessing. The Lasso algorithm was applied to construct radiomics signatures. The predictive performance of radiomics models was evaluated by receiver operating characteristic (ROC) analysis. A radiographic-radiomics combined nomogram was developed to evaluate its clinical utility. The radiomics signature on CECT (AUC: 0.896 [95% CI 0.815–0.977]) performed better than the radiomics signature on NCECT data (AUC: 0.851[95% CI 0.712–0.989]) in the validation set. An individualized prediction nomogram was developed using radiomics model on CECT and radiographic model including type, shape and vascular change. The C index of the nomogram was 0.915 in the training set and 0.881 in the validation set, demonstrating good discrimination. Decision curve analysis (DCA) revealed that the proposed model was clinically useful. The radiomics signature built on CECT could provide additional benefit to promote the preoperative prediction of invasiveness in patients with subcentimeter lung adenocarcinomas.
Collapse
|
24
|
Radiomics Model for Evaluating the Level of Tumor-Infiltrating Lymphocytes in Breast Cancer Based on Dynamic Contrast-Enhanced MRI. Clin Breast Cancer 2020; 21:440-449.e1. [PMID: 33795199 DOI: 10.1016/j.clbc.2020.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND To help identify potential breast cancer (BC) candidates for immunotherapies, we aimed to develop and validate a radiology-based biomarker (radiomic score) to predict the level of tumor-infiltrating lymphocytes (TILs) in patients with BC. PATIENTS AND METHODS This retrospective study enrolled 172 patients with histopathology-confirmed BC assigned to the training (n = 121) or testing (n = 51) cohorts. Radiomic features were extracted and selected using Analysis-Kit software. The correlation between TIL levels and clinical features and radiomic features was evaluated. The clinical features model, radiomic signature model, and combined prediction model were constructed and compared. Predictive performance was assessed by receiver operating characteristic analysis and clinical utility by implementing a nomogram. RESULTS Seven radiomic features were selected as the best discriminators to construct the radiomic signature model, the performance of which was good in both the training and validation data sets, with an area under the curve (AUC) of 0.742 (95% confidence interval [CI], 0.642-0.843) and 0.718 (95% CI, 0.558-0.878), respectively. Estrogen receptor status and tumor diameter were confirmed to be significant features for building the clinical feature model, which had an AUC of 0.739 (95% CI, 0.632-0.846) and 0.824 (95% CI, 0.692-0.957), respectively. The combined prediction model had an AUC of 0.800 (95% CI, 0.709-0.892) and 0.842 (95% CI, 0.730-0.954), respectively. CONCLUSION The radiomic signature could be an important predictor of the TIL level in BC, which, when validated, could be useful in identifying BC patients who can benefit from immunotherapies. The nomogram may help clinicians make decisions.
Collapse
|
25
|
Pathak P, Jalal AS, Rai R. Breast Cancer Image Classification: A Review. Curr Med Imaging 2020; 17:720-740. [PMID: 33371857 DOI: 10.2174/0929867328666201228125208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast cancer represents uncontrolled breast cell growth. Breast cancer is the most diagnosed cancer in women worldwide. Early detection of breast cancer improves the chances of survival and increases treatment options. There are various methods for screening breast cancer, such as mammogram, ultrasound, computed tomography and Magnetic Resonance Imaging (MRI). MRI is gaining prominence as an alternative screening tool for early detection and breast cancer diagnosis. Nevertheless, MRI can hardly be examined without the use of a Computer-Aided Diagnosis (CAD) framework, due to the vast amount of data. OBJECTIVE This paper aims to cover the approaches used in the CAD system for the detection of breast cancer. METHODS In this paper, the methods used in CAD systems are categories into two classes: the conventional approach and artificial intelligence (AI) approach. RESULTS The conventional approach covers the basic steps of image processing, such as preprocessing, segmentation, feature extraction and classification. The AI approach covers the various convolutional and deep learning networks used for diagnosis. CONCLUSION This review discusses some of the core concepts used in breast cancer and presents a comprehensive review of efforts in the past to address this problem.
Collapse
Affiliation(s)
- Pooja Pathak
- Department of Mathematics, GLA University, Mathura, India
| | - Anand Singh Jalal
- Department of Computer Engineering & Applications, GLA University, Mathura, India
| | - Ritu Rai
- Department of Computer Engineering & Applications, GLA University, Mathura, India
| |
Collapse
|
26
|
Pharmacokinetic Analysis of Dynamic Contrast-Enhanced Magnetic Resonance Imaging at 7T for Breast Cancer Diagnosis and Characterization. Cancers (Basel) 2020; 12:cancers12123763. [PMID: 33327532 PMCID: PMC7765071 DOI: 10.3390/cancers12123763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Confirming whether a breast lesion is benign or malignant usually involves an invasive tissue sample with an image-guided breast biopsy, which may cause substantial inconvenience to the patient. The purpose of this study was to investigate whether imaging biomarkers obtained from noninvasive dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the breast can help differentiate benign from malignant lesions and characterize breast cancers to the same extent as a biopsy. In a sample of 37 patients with suspicious findings on mammography or ultrasound, we found that the radiologists’ diagnostic accuracy was improved when subjective Breast Imaging-Reporting and Data System (BI-RADS) evaluation was augmented with the use of pharmacokinetic markers. This study serves as a starting point for future collaborative research with the potential of providing valuable noninvasive tools for improved breast cancer diagnosis. Abstract The purpose of this study was to investigate whether ultra-high-field dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the breast at 7T using quantitative pharmacokinetic (PK) analysis can differentiate between benign and malignant breast tumors for improved breast cancer diagnosis and to predict molecular subtypes, histologic grade, and proliferation rate in breast cancer. In this prospective study, 37 patients with 43 lesions suspicious on mammography or ultrasound underwent bilateral DCE-MRI of the breast at 7T. PK parameters (KTrans, kep, Ve) were evaluated with two region of interest (ROI) approaches (2D whole-tumor ROI or 2D 10 mm standardized ROI) manually drawn by two readers (senior reader, R1, and R2) independently. Histopathology served as the reference standard. PK parameters differentiated benign and malignant lesions (n = 16, 27, respectively) with good accuracy (AUCs = 0.655–0.762). The addition of quantitative PK analysis to subjective BI-RADS classification improved breast cancer detection from 88.4% to 97.7% for R1 and 86.04% to 97.67% for R2. Different ROI approaches did not influence diagnostic accuracy for both readers. Except for KTrans for whole-tumor ROI for R2, none of the PK parameters were valuable to predict molecular subtypes, histologic grade, or proliferation rate in breast cancer. In conclusion, PK-enhanced BI-RADS is promising for the noninvasive differentiation of benign and malignant breast tumors.
Collapse
|
27
|
La Forgia D, Fanizzi A, Campobasso F, Bellotti R, Didonna V, Lorusso V, Moschetta M, Massafra R, Tamborra P, Tangaro S, Telegrafo M, Pastena MI, Zito A. Radiomic Analysis in Contrast-Enhanced Spectral Mammography for Predicting Breast Cancer Histological Outcome. Diagnostics (Basel) 2020; 10:E708. [PMID: 32957690 PMCID: PMC7555402 DOI: 10.3390/diagnostics10090708] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Contrast-Enhanced Spectral Mammography (CESM) is a recently introduced mammographic method with characteristics particularly suitable for breast cancer radiomic analysis. This work aims to evaluate radiomic features for predicting histological outcome and two cancer molecular subtypes, namely Human Epidermal growth factor Receptor 2 (HER2)-positive and triple-negative. From 52 patients, 68 lesions were identified and confirmed on histological examination. Radiomic analysis was performed on regions of interest (ROIs) selected from both low-energy (LE) and ReCombined (RC) CESM images. Fourteen statistical features were extracted from each ROI. Expression of estrogen receptor (ER) was significantly correlated with variation coefficient and variation range calculated on both LE and RC images; progesterone receptor (PR) with skewness index calculated on LE images; and Ki67 with variation coefficient, variation range, entropy and relative smoothness indices calculated on RC images. HER2 was significantly associated with relative smoothness calculated on LE images, and grading tumor with variation coefficient, entropy and relative smoothness calculated on RC images. Encouraging results for differentiation between ER+/ER-, PR+/PR-, HER2+/HER2-, Ki67+/Ki67-, High-Grade/Low-Grade and TN/NTN were obtained. Specifically, the highest performances were obtained for discriminating HER2+/HER2- (90.87%), ER+/ER- (83.79%) and Ki67+/Ki67- (84.80%). Our results suggest an interesting role for radiomics in CESM to predict histological outcomes and particular tumors' molecular subtype.
Collapse
Affiliation(s)
- Daniele La Forgia
- Struttura Semplice Dipartimentale di Radiologia Senologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Annarita Fanizzi
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.F.); (V.D.); (P.T.)
| | - Francesco Campobasso
- Dipartimento di Economia e Finanza, Università degli Studi di Bari “Aldo Moro”, Largo Abbazia S. Scolastica, 70124 Bari, Italy;
| | - Roberto Bellotti
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari “Aldo Moro”, Via Giovanni Amendola, 165/a, 70126 Bari, Italy;
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Giovanni Amendola, 165/a, 70126 Bari, Italy;
| | - Vittorio Didonna
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.F.); (V.D.); (P.T.)
| | - Vito Lorusso
- Unità Operativa Complessa di Oncologia Medica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Marco Moschetta
- Unità Operativa Semplice Dipartimentale Radiodiagnostica ad Indirizzo Senologico, Azienda Ospedaliero-Universitaria Consorziale Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.M.); (M.T.)
| | - Raffaella Massafra
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.F.); (V.D.); (P.T.)
| | - Pasquale Tamborra
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.F.); (V.D.); (P.T.)
| | - Sabina Tangaro
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Giovanni Amendola, 165/a, 70126 Bari, Italy;
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70121 Bari, Italy
| | - Michele Telegrafo
- Unità Operativa Semplice Dipartimentale Radiodiagnostica ad Indirizzo Senologico, Azienda Ospedaliero-Universitaria Consorziale Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.M.); (M.T.)
| | - Maria Irene Pastena
- Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.I.P.); (A.Z.)
| | - Alfredo Zito
- Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.I.P.); (A.Z.)
| |
Collapse
|
28
|
MRI-based radiomics in breast cancer: feature robustness with respect to inter-observer segmentation variability. Sci Rep 2020; 10:14163. [PMID: 32843663 PMCID: PMC7447771 DOI: 10.1038/s41598-020-70940-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Radiomics is an emerging field using the extraction of quantitative features from medical images for tissue characterization. While MRI-based radiomics is still at an early stage, it showed some promising results in studies focusing on breast cancer patients in improving diagnoses and therapy response assessment. Nevertheless, the use of radiomics raises a number of issues regarding feature quantification and robustness. Therefore, our study aim was to determine the robustness of radiomics features extracted by two commonly used radiomics software with respect to variability in manual breast tumor segmentation on MRI. A total of 129 histologically confirmed breast tumors were segmented manually in three dimensions on the first post-contrast T1-weighted MR exam by four observers: a dedicated breast radiologist, a resident, a Ph.D. candidate, and a medical student. Robust features were assessed using the intraclass correlation coefficient (ICC > 0.9). The inter-observer variability was evaluated by the volumetric Dice Similarity Coefficient (DSC). The mean DSC for all tumors was 0.81 (range 0.19–0.96), indicating a good spatial overlap of the segmentations based on observers of varying expertise. In total, 41.6% (552/1328) and 32.8% (273/833) of all RadiomiX and Pyradiomics features, respectively, were identified as robust and were independent of inter-observer manual segmentation variability.
Collapse
|
29
|
Radiomics derived from dynamic contrast-enhanced MRI pharmacokinetic protocol features: the value of precision diagnosis ovarian neoplasms. Eur Radiol 2020; 31:368-378. [PMID: 32767049 DOI: 10.1007/s00330-020-07112-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/29/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To evaluate the efficiency of 2- and 3-class classification predictive tasks constructed from radiomics features extracted from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) pharmacokinetic (PK) protocol in discriminating among benign, borderline, and malignant ovarian tumors. METHODS One hundred and four ovarian lesions were evaluated using preoperative DCE-MRI. Radiomics features were extracted from 7 types of DCE-MR images. To explore the differential ability of radiomics between three types of ovarian tumors, two- and three-class classification tasks were established. The 2-class classification task was divided into three subtasks: benign vs. borderline (task A), benign vs. malignant (task B), and borderline vs. malignant (task C). For the 3-class classification task, 104 lesions were randomly divided into training (72 lesions) and validation (32 lesions) cohorts. The discrimination abilities of the radiomics signatures were established with the training cohort and tested with the independent validation cohort. The predictive performance of the task was evaluated by receiver operating characteristic (ROC) curve, calibration curve analysis, and decision curve analysis (DCA). RESULTS For the 2-class classification task, the combination of PK radiomics signatures model (PK model) showed a good diagnostic ability with the highest area under the ROC curves (AUCs) of 0.899, 0.865, and 0.893 for tasks A, B, and C, respectively. Additionally, the 3-class classification task demonstrated a good discrimination performance with AUCs of 0.893, 0.944, and 0.891 for the benign, borderline, and malignant groups, respectively. CONCLUSIONS Radiomics analysis based on the DCE-MRI PK protocol showed promise for discriminating among benign, borderline, and malignant ovarian tumors. KEY POINTS • Two-class classification predictive task of DCE-MRI PK protocol enabled the classification of 3 categories of ovarian tumors through the pairwise comparison strategy with a perfect diagnostic ability. • Three-class classification predictive task maintained good performance to effectively judge each category of ovarian tumors directly.
Collapse
|
30
|
Conti A, Duggento A, Indovina I, Guerrisi M, Toschi N. Radiomics in breast cancer classification and prediction. Semin Cancer Biol 2020; 72:238-250. [PMID: 32371013 DOI: 10.1016/j.semcancer.2020.04.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022]
Abstract
Breast Cancer (BC) is the common form of cancer in women. Its diagnosis and screening are usually performed through different imaging modalities such as mammography, magnetic resonance imaging and ultrasound. However, mammography and ultrasound-imaging techniques have limited sensitivity and specificity both in identifying lesions and in differentiating malign from benign lesions, especially in presence of dense breast parenchyma. Due to the higher resolution of magnetic resonance images, MRI represents the method with the higher specificity and sensitivity among all the available tools, in both lesions' identification and diagnosis. However, especially for diagnosis, even MRI has limitations that are only partially solved if combined with mammography. Unfortunately, due to the limits of all these imaging tools, in order to have a certain diagnosis, patients often receive painful and costly bioptics procedures. In this context, several computational approaches have been developed to increase sensitivity, while maintaining the same specificity, in BC diagnosis and screening. Amongst these, radiomics has been increasingly gaining ground in oncology to improve cancer diagnosis, prognosis and treatment. Radiomics derives multiple quantitative features from single or multiple medical imaging modalities, highlighting image traits which are not visible to the naked eye and hence significantly augmenting the discriminatory and predictive potential of medical imaging. This review article aims to summarize the state of the art in radiomics-based BC research. The dominating evidence extracted from the literature points towards a high potential of radiomics in disentangling malignant from benign breast lesions, classifying BC types and grades and also in predicting treatment response and recurrence risk. In the era of personalized medicine, radiomics has the potential to improve diagnosis, prognosis, prediction, monitoring, image-based intervention, and assessment of therapeutic response in BC.
Collapse
Affiliation(s)
- Allegra Conti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Via Ardeatina, 306, 00179, Rome, Italy; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| | - Andrea Duggento
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| | - Iole Indovina
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Via Ardeatina, 306, 00179, Rome, Italy; Department of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Maria Guerrisi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, United States.
| |
Collapse
|
31
|
Zhang Q, Peng Y, Liu W, Bai J, Zheng J, Yang X, Zhou L. Radiomics Based on Multimodal MRI for the Differential Diagnosis of Benign and Malignant Breast Lesions. J Magn Reson Imaging 2020; 52:596-607. [PMID: 32061014 DOI: 10.1002/jmri.27098] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND MRI-based radiomics has been used to diagnose breast lesions; however, little research combining quantitative pharmacokinetic parameters of dynamic contrast-enhanced MRI (DCE-MRI) and diffusion kurtosis imaging (DKI) exists. PURPOSE To develop and validate a multimodal MRI-based radiomics model for the differential diagnosis of benign and malignant breast lesions and analyze the discriminative abilities of different MR sequences. STUDY TYPE Retrospective. POPULATION In all, 207 female patients with 207 histopathology-confirmed breast lesions (95 benign and 112 malignant) were included in the study. Then 159 patients were assigned to the training group, and 48 patients comprised the validation group. FIELD STRENGTH/SEQUENCE T2 -weighted (T2 W), T1 -weighted (T1 W), diffusion-weighted MR imaging (b-values = 0, 500, 800, and 2000 seconds/mm2 ) and quantitative DCE-MRI were performed on a 3.0T MR scanner. ASSESSMENT Radiomics features were extracted from T2 WI, T1 WI, DKI, apparent diffusion coefficient (ADC) maps, and DCE pharmacokinetic parameter maps in the training set. Models based on each sequence or combinations of sequences were built using a support vector machine (SVM) classifier and used to differentiate benign and malignant breast lesions in the validation set. STATISTICAL TESTS Optimal feature selection was performed by Spearman's rank correlation coefficients and the least absolute shrinkage and selection operator algorithm (LASSO). Receiver operating characteristic (ROC) curves were used to assess the diagnostic performance of the radiomics models in the validation set. RESULTS The area under the ROC curve (AUC) of the optimal radiomics model, including T2 WI, DKI, and quantitative DCE-MRI parameter maps was 0.921, with an accuracy of 0.833. The AUCs of the models based on T1 WI, T2 WI, ADC map, DKI, and DCE pharmacokinetic parameter maps were 0.730, 0.791, 0.770, 0.788, and 0.836, respectively. DATA CONCLUSION The model based on radiomics features from T2 WI, DKI, and quantitative DCE pharmacokinetic parameter maps has a high discriminatory ability for benign and malignant breast lesions. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 2 J. Magn. Reson. Imaging 2020;52:596-607.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunsong Peng
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Wei Liu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayuan Bai
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Zheng
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xiaodong Yang
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Lijuan Zhou
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
32
|
Monti S, Brancato V, Di Costanzo G, Basso L, Puglia M, Ragozzino A, Salvatore M, Cavaliere C. Multiparametric MRI for Prostate Cancer Detection: New Insights into the Combined Use of a Radiomic Approach with Advanced Acquisition Protocol. Cancers (Basel) 2020; 12:cancers12020390. [PMID: 32046196 PMCID: PMC7072162 DOI: 10.3390/cancers12020390] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/27/2020] [Accepted: 02/05/2020] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) is a disease affecting an increasing number of men worldwide. Several efforts have been made to identify imaging biomarkers to non-invasively detect and characterize PCa, with substantial improvements thanks to multiparametric Magnetic Resonance Imaging (mpMRI). In recent years, diffusion kurtosis imaging (DKI) was proposed to be directly related to tissue physiological and pathological characteristic, while the radiomic approach was proven to be a key method to study cancer imaging phenotypes. Our aim was to compare a standard radiomic model for PCa detection, built using T2-weighted (T2W) and Apparent Diffusion Coefficient (ADC), with an advanced one, including DKI and quantitative Dynamic Contrast Enhanced (DCE), while also evaluating differences in prediction performance when using 2D or 3D lesion segmentation. The obtained results in terms of diagnostic accuracy were high for all of the performed comparisons, reaching values up to 0.99 for the area under a receiver operating characteristic curve (AUC), and 0.98 for both sensitivity and specificity. In comparison, the radiomic model based on standard features led to prediction performances higher than those of the advanced model, while greater accuracy was achieved by the model extracted from 3D segmentation. These results provide new insights into active topics of discussion, such as choosing the most convenient acquisition protocol and the most appropriate postprocessing pipeline to accurately detect and characterize PCa.
Collapse
Affiliation(s)
- Serena Monti
- IRCCS SDN, 80143 Naples, Italy; (S.M.); (L.B.); (M.S.); (C.C.)
| | - Valentina Brancato
- IRCCS SDN, 80143 Naples, Italy; (S.M.); (L.B.); (M.S.); (C.C.)
- Correspondence: ; Tel.: +39-081-2408-299
| | | | - Luca Basso
- IRCCS SDN, 80143 Naples, Italy; (S.M.); (L.B.); (M.S.); (C.C.)
| | - Marta Puglia
- Ospedale S. Maria delle Grazie, 80078 Pozzuoli, Italy; (G.D.C.); (M.P.); (A.R.)
| | - Alfonso Ragozzino
- Ospedale S. Maria delle Grazie, 80078 Pozzuoli, Italy; (G.D.C.); (M.P.); (A.R.)
| | - Marco Salvatore
- IRCCS SDN, 80143 Naples, Italy; (S.M.); (L.B.); (M.S.); (C.C.)
| | - Carlo Cavaliere
- IRCCS SDN, 80143 Naples, Italy; (S.M.); (L.B.); (M.S.); (C.C.)
| |
Collapse
|
33
|
Ye DM, Wang HT, Yu T. The Application of Radiomics in Breast MRI: A Review. Technol Cancer Res Treat 2020; 19:1533033820916191. [PMID: 32347167 PMCID: PMC7225803 DOI: 10.1177/1533033820916191] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/21/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer has been a worldwide burden of women's health. Although concerns have been raised for early diagnosis and timely treatment, the efforts are still needed for precision medicine and individualized treatment. Radiomics is a new technology with immense potential to obtain mineable data to provide rich information about the diagnosis and prognosis of breast cancer. In our study, we introduced the workflow and application of radiomics as well as its outlook and challenges based on published studies. Radiomics has the potential ability to differentiate between malignant and benign breast lesions, predict axillary lymph node status, molecular subtypes of breast cancer, tumor response to chemotherapy, and survival outcomes. Our study aimed to help clinicians and radiologists to know the basic information of radiomics and encourage cooperation with scientists to mine data for better application in clinical practice.
Collapse
Affiliation(s)
- Dong-Man Ye
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, People’s Republic of China
| | - Hao-Tian Wang
- Dalian Medical University, The First Clinical College, Dalian, Liaoning Province, People’s Republic of China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, People’s Republic of China
| |
Collapse
|
34
|
Zanfardino M, Franzese M, Pane K, Cavaliere C, Monti S, Esposito G, Salvatore M, Aiello M. Bringing radiomics into a multi-omics framework for a comprehensive genotype-phenotype characterization of oncological diseases. J Transl Med 2019; 17:337. [PMID: 31590671 PMCID: PMC6778975 DOI: 10.1186/s12967-019-2073-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
Genomic and radiomic data integration, namely radiogenomics, can provide meaningful knowledge in cancer diagnosis, prognosis and treatment. Despite several data structures based on multi-layer architecture proposed to combine multi-omic biological information, none of these has been designed and assessed to include radiomic data as well. To meet this need, we propose to use the MultiAssayExperiment (MAE), an R package that provides data structures and methods for manipulating and integrating multi-assay experiments, as a suitable tool to manage radiogenomic experiment data. To this aim, we first examine the role of radiogenomics in cancer phenotype definition, then the current state of radiogenomics data integration in public repository and, finally, challenges and limitations of including radiomics in MAE, designing an extended framework and showing its application on a case study from the TCGA-TCIA archives. Radiomic and genomic data from 91 patients have been successfully integrated in a single MAE object, demonstrating the suitability of the MAE data structure as container of radiogenomic data.
Collapse
|
35
|
Incoronato M, Grimaldi AM, Mirabelli P, Cavaliere C, Parente CA, Franzese M, Staibano S, Ilardi G, Russo D, Soricelli A, Catalano OA, Salvatore M. Circulating miRNAs in Untreated Breast Cancer: An Exploratory Multimodality Morpho-Functional Study. Cancers (Basel) 2019; 11:E876. [PMID: 31234535 PMCID: PMC6628327 DOI: 10.3390/cancers11060876] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to identify new disease-related circulating miRNAs with high diagnostic accuracy for breast cancer (BC) and to correlate their deregulation with the morpho-functional characteristics of the tumour, as assessed in vivo by positron emission tomography/magnetic resonance (PET/MR) imaging. A total of 77 untreated female BC patients underwent same-day PET/MR and blood collection, and 78 healthy donors were recruited as negative controls. The expression profile of 84 human miRNAs was screened by using miRNA PCR arrays and validated by real-time PCR. The validated miRNAs were correlated with the quantitative imaging parameters extracted from the primary BC samples. Circulating miR-125b-5p and miR-143-3p were upregulated in BC plasma and able to discriminate BC patients from healthy subjects (miR-125-5p area under the receiver operating characteristic ROC curve (AUC) = 0.85 and miR-143-3p AUC = 0.80). Circulating CA15-3, a soluble form of the transmembrane glycoprotein Mucin 1 (MUC-1) that is upregulated in epithelial cancer cells of different origins, was combined with miR-125b-5p and improved the diagnostic accuracy from 70% (CA15-3 alone) to 89% (CA15-3 plus miR-125b-5p). MiR-143-3p showed a strong and significant correlation with the stage of the disease, apparent diffusion coefficient (ADCmean), reverse efflux volume transfer constant (Kepmean) and maximum standardized uptake value (SUVmax), and it might represent a biomarker of tumour aggressiveness. Similarly, miR-125b-5p was correlated with stage and grade 2 but inversely correlated with the forward volume transfer constant (Ktransmean) and proliferation index (Ki67), suggesting a potential role as a biomarker of a relatively more favourable prognosis. In situ hybridization (ISH) experiments revealed that miR-143-3p was expressed in endothelial tumour cells, miR-125-5p in cancer-associated fibroblasts, and neither in epithelial tumour cells. Our results suggested that miR-125-5p and miR-143-3p are potential biomarkers for the risk stratification of BC, and Kaplan-Maier plots confirmed this hypothesis. In addition, the combined use of miR-125-b-5p and CA15-3 enhanced the diagnostic accuracy up to 89%. This is the first study that correlates circulating miRNAs with in vivo quantified tumour biology through PET/MR biomarkers. This integration elucidates the link between the plasmatic increase in these two potential circulating biomarkers and the biology of untreated BC. In conclusion, while miR-143-3b and miR-125b-5p provide valuable information for prognosis, a combination of miR-125b-5p with the tumour marker CA15-3 improves sensitivity for BC detection, which warrants consideration by further validation studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stefania Staibano
- Department of Advanced Biomedical Sciences, Federico II University, 80131 Naples, Italy.
| | - Gennaro Ilardi
- Department of Advanced Biomedical Sciences, Federico II University, 80131 Naples, Italy.
| | - Daniela Russo
- Department of Advanced Biomedical Sciences, Federico II University, 80131 Naples, Italy.
| | - Andrea Soricelli
- IRCCS SDN, 80143 Naples, Italy.
- Department of Motor Sciences & Wellness, University of Naples Parthenope, 80133 Naples, Italy.
| | - Onofrio Antonio Catalano
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | | |
Collapse
|
36
|
MR Imaging-Histology Correlation by Tailored 3D-Printed Slicer in Oncological Assessment. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:1071453. [PMID: 31275082 PMCID: PMC6560325 DOI: 10.1155/2019/1071453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/12/2019] [Indexed: 12/14/2022]
Abstract
3D printing and reverse engineering are innovative technologies that are revolutionizing scientific research in the health sciences and related clinical practice. Such technologies are able to improve the development of various custom-made medical devices while also lowering design and production costs. Recent advances allow the printing of particularly complex prototypes whose geometry is drawn from precise computer models designed on in vivo imaging data. This review summarizes a new method for histological sample processing (applicable to e.g., the brain, prostate, liver, and renal mass) which employs a personalized mold developed from diagnostic images through computer-aided design software and 3D printing. Through positioning the custom mold in a coherent manner with respect to the organ of interest (as delineated by in vivo imaging data), the cutting instrument can be precisely guided in order to obtain blocks of tissue which correspond with high accuracy to the slices imaged. This approach appeared crucial for validation of new quantitative imaging tools, for an accurate imaging-histopathological correlation and for the assessment of radiogenomic features extracted from oncological lesions. The aim of this review is to define and describe 3D printing technologies which are applicable to oncological assessment and slicer design, highlighting the radiological and pathological perspective as well as recent applications of this approach for the histological validation of and correlation with MR images.
Collapse
|
37
|
Aiello M, Cavaliere C, D'Albore A, Salvatore M. The Challenges of Diagnostic Imaging in the Era of Big Data. J Clin Med 2019; 8:E316. [PMID: 30845692 PMCID: PMC6463157 DOI: 10.3390/jcm8030316] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 01/08/2023] Open
Abstract
The diagnostic imaging field has undergone considerable growth both in terms of technological development and market expansion; with the following increasing production of a considerable amount of data that potentially fully poses diagnostic imaging in the Big data in the context of healthcare. Nevertheless, the mere production of a large amount of data does not automatically permit the real exploitation of their intrinsic value. Therefore, it is necessary to develop digital platforms and applications that favor the correct and advantageous management of diagnostic images such as Big data. This work aims to frame the role of diagnostic imaging in this new scenario, emphasizing the open challenges in exploiting such intense data generation for decision making with Big data analytics.
Collapse
Affiliation(s)
- Marco Aiello
- IRCCS SDN, Via Gianturco 113, Napoli 80143, Italy.
| | | | | | | |
Collapse
|
38
|
Inglese M, Cavaliere C, Monti S, Forte E, Incoronato M, Nicolai E, Salvatore M, Aiello M. A multi-parametric PET/MRI study of breast cancer: Evaluation of DCE-MRI pharmacokinetic models and correlation with diffusion and functional parameters. NMR IN BIOMEDICINE 2019; 32:e4026. [PMID: 30379384 DOI: 10.1002/nbm.4026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
46 patients with histologically confirmed breast cancer were enrolled and imaged with a 3T hybrid PET/MRI system, at staging. Diffusion, functional and perfusion parameters (measured by Tofts and shutter speed models) were compared. Results showed a good correlation between pharmacokinetic parameters and the SUV.
Collapse
Affiliation(s)
- Marianna Inglese
- IRCCS SDN, Naples, Italy
- Department of Computer, Control and Management Engineering Antonio Ruberti, University of Rome 'La Sapienza', Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Incoronato M, Grimaldi AM, Cavaliere C, Inglese M, Mirabelli P, Monti S, Ferbo U, Nicolai E, Soricelli A, Catalano OA, Aiello M, Salvatore M. Relationship between functional imaging and immunohistochemical markers and prediction of breast cancer subtype: a PET/MRI study. Eur J Nucl Med Mol Imaging 2018; 45:1680-1693. [DOI: 10.1007/s00259-018-4010-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023]
|