1
|
Ren L, Yuan Z, Xie T, Wu D, Kang Q, Li J, Li J. Extraction and characterization of cyclic lipopeptides with antifungal and antioxidant activities from Bacillus amyloliquefaciens. J Appl Microbiol 2022; 133:3573-3584. [PMID: 36000263 DOI: 10.1111/jam.15791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/09/2022] [Accepted: 08/21/2022] [Indexed: 11/26/2022]
Abstract
AIMS This study aimed to isolate active substances from metabolites of Bacillus amyloliquefaciens SJ100001 and examine their antifungal activity against Fusarium oxysporum (F. oxysporum) SJ300024 screened from the root-soil of cucumber wilt. METHODS AND RESULTS An active substance, anti-SJ300024, was obtained from the fermentation broth of strain SJ100001 by reversed-phase silica gel and gel chromatography, and further got its chemical structure as cyclic lipopeptide Epichlicin through nuclear magnetic resonance (NMR) and mass spectrometry (MS). In vitro experiments showed that Epichlicin had a better inhibitory rate (67.46%) against the strain SJ300024 than the commercially available fungicide hymexazol (45.1%) at the same concentration. The MTT assays proved that Epichlicin was non-cytotoxic, besides it also had good free radical scavenging ability and total reducing ability. CONCLUSIONS Epichlicin isolated from strain SJ100001 can effectively control F. oxysporum SJ300024 screened from the root-soil of cucumber wilt. SIGNIFICANCE AND IMPACT OF THE STUDY Epichlicin may be used as an environmentally friendly and efficient biocontrol agent for controlling Fusarium wilt of cucumber and reducing crop losses. More importantly, the non-cytotoxicity of Epichlicin can avoid harm to consumers. Additionally, Epichlicin has broad application prospects in medicine due to its antioxidant properties.
Collapse
Affiliation(s)
- Li Ren
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Ziqiang Yuan
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Tingyu Xie
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Daren Wu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Jian Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| |
Collapse
|
2
|
A Novel Biocompatible Herbal Extract-Loaded Hydrogel for Acne Treatment and Repair. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5598291. [PMID: 34765083 PMCID: PMC8577930 DOI: 10.1155/2021/5598291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/16/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
A novel herbal extract-loaded gel containing several biofunctional extracts, including green tea, Zingiber officinale Rosc, Phyllanthus emblica, and salicylic acid, was developed for acne vulgaris. These natural raw materials were blended with suitable dosages of gelatin and carboxymethyl cellulose (CMC) to produce a biocompatible herbal gel. The physical chemistry properties of the hydrogel were determined by Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), rheometry, and scanning electron microscopy (SEM), and the hydrogel showed good mechanical and morphological characteristics. The herbal extract-loaded hydrogel mimicked extracellular matrix properties and showed good antioxidant and anti-inflammatory properties and various advantages, serving as a potential wound dressing material because of its high moisture retention ability, wound exudate absorption behavior, and biocompatibility. It exhibited moderate-high antioxidative and anti-inflammatory qualities that were important for dermis wound closure. The clinical trial results showed that most patients experienced moderate to high healing rates, and four of twenty-four individuals (16.67%) had recovery area ratios greater than 80%. This herbal extract-loaded hydrogel has effective ingredients and excellent mechanical properties as a bioactive dressing agent for acne treatment.
Collapse
|
3
|
Tso KH, Lumsangkul C, Cheng MC, Ju JC, Fan YK, Chiang HI. Differential Effects of Green Tea Powders on the Protection of Brown Tsaiya and Kaiya Ducklings against Trichothecene T-2 Toxin Toxicity. Animals (Basel) 2021; 11:ani11092541. [PMID: 34573507 PMCID: PMC8466186 DOI: 10.3390/ani11092541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The objective of this study is to examine the effects of T-2 toxin (T-2) and green tea powders (GTP) on growth performance, hematology, and pathology parameters in Brown Tsaiya ducklings (BTDs) and Kaiya ducklings (KDs). T-2 toxin shows a strong and differential toxicity in growth suppression, as well as abnormalities in the hematological and pathological parameters of BTDs and KDs. We found that GTP could potentially prevent T-2-induced poor growth performance and improve some hematological parameters. Moreover, BTDs were more sensitive than KDs in terms of responses to T-2 toxicity and GTP detoxification. Abstract A 3-week feeding trial in a 3 × 2 × 2 factorial design was conducted with three concentrations (0, 0.5, and 5 mg/kg) of T-2 toxin (T-2) and two levels (0% and 0.5%) of green tea powder (GTP) supplements used in the diets of female brown Tsaiya ducklings (BTDs) and Kaiya ducklings (KDs), respectively. Breed had a significant effect on the growth performances and the relative weights of organs and carcass. In general, the growth performances of KDs were better than BTDs. The relative weights of organs and carcass of BTDs were typically heavier than those of KDs; however, the breast of KDs was heavier than those of BTDs. Both ducklings received 5 mg/kg of T-2 blended in the diet showed lower feed intake and body weight gain (BWG) in the second and the third week. The diet containing 5 mg/kg of T-2 and 0.5% GTP improved the BWG compared to those fed the diet supplemented with 5 mg/kg of T-2 without GTP in BTDs. Ducklings fed the diet containing 5 mg/kg of T-2 induced hypocalcemia and hypomagnesemia, as well as decreased concentrations of creatine phosphokinase and alkaline phosphatase. The concentrations of blood urea nitrogen (BUN) and glutamate oxaloacetate transaminase (GOT) were increased in KDs and BTDs fed the diet containing 5 mg/kg of T-2 without GTP, respectively. However, duckling diets containing 5 mg/kg of T-2 with 0.5% GTP lowered concentrations of BUN and GOT in the blood plasma of KDs and BTDs, respectively. The diet containing 5 mg/kg of T-2 increased the relative kidney weight but decreased the relative breast weight of ducklings. Enlarged gizzards and reduced relative leg weights were observed in BTDs fed the diets containing 5 mg/kg of T-2. In summary, BTDs are more sensitive than KDs in responding to T-2 toxicity and GTP detoxification. Green tea powder has detoxification ability and could potentially mitigate T-2 toxicity on BWG, BUN, and GOT in ducklings.
Collapse
Affiliation(s)
- Ko-Hua Tso
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (M.-C.C.)
| | - Chompunut Lumsangkul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Min-Chien Cheng
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (M.-C.C.)
- Hengchun Branch Institute, Livestock Research Institute, Council of Agriculture, Pingtung 94644, Taiwan
| | - Jyh-Cherng Ju
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (M.-C.C.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Correspondence: (J.-C.J.); (Y.-K.F.); (H.-I.C.); Tel.: +886-4-2287-0613 (J.-C.J. & Y.-K.F. & H.-I.C.); Fax: +886-4-2286-0265 (J.-C.J. & Y.-K.F. & H.-I.C.)
| | - Yang-Kwang Fan
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (M.-C.C.)
- Correspondence: (J.-C.J.); (Y.-K.F.); (H.-I.C.); Tel.: +886-4-2287-0613 (J.-C.J. & Y.-K.F. & H.-I.C.); Fax: +886-4-2286-0265 (J.-C.J. & Y.-K.F. & H.-I.C.)
| | - Hsin-I Chiang
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (M.-C.C.)
- Center for the Integrative and Evolutionary Galliformes Genomics, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: (J.-C.J.); (Y.-K.F.); (H.-I.C.); Tel.: +886-4-2287-0613 (J.-C.J. & Y.-K.F. & H.-I.C.); Fax: +886-4-2286-0265 (J.-C.J. & Y.-K.F. & H.-I.C.)
| |
Collapse
|
4
|
Transdermal Delivery Systems of Natural Products Applied to Skin Therapy and Care. Molecules 2020; 25:molecules25215051. [PMID: 33143260 PMCID: PMC7662758 DOI: 10.3390/molecules25215051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/15/2022] Open
Abstract
Natural products are favored because of their non-toxicity, low irritants, and market reacceptance. We collected examples, according to ancient wisdom, of natural products to be applied in transdermal delivery. A transdermal delivery system, including different types of agents, such as ointments, patches, and gels, has long been used for skin concerns. In recent years, many novel transdermal applications, such as nanoemulsions, liposomes, lipid nanoparticles, and microneedles, have been reported. Nanosized drug delivery systems are widely applied in natural product deliveries. Nanosized materials notably enhance bioavailability and solubility, and are reported to improve the transdermal permeation of many substances compared with conventional topical formulations. Natural products have been made into nanosized biomaterials in order to enhance the penetration effect. Before introducing the novel transdermal applications of natural products, we present traditional methods within this article. The descriptions of novel transdermal applications are classified into three parts: liposomes, emulsions, and lipid nanoparticles. Each section describes cases that are related to promising natural product transdermal use. Finally, we summarize the outcomes of various studies on novel transdermal agents applied to skin treatments.
Collapse
|
5
|
Isokotomolide A from Cinnamomum kotoense Induce Melanoma Autophagy and Apoptosis In Vivo and In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3425147. [PMID: 33062137 PMCID: PMC7537700 DOI: 10.1155/2020/3425147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Abstract
Melanoma is an aggressive cancer with high lethality. In order to find new anticancer agents, isokotomolide A (Iso A) and secokotomolide A (Sec A) isolated from Cinnamomum kotoense were identified to be potential bioactive agents against human melanoma but without strong antioxidative properties. Cell proliferation assay displayed Iso A and Sec A treated in the normal human skin cells showed high viabilities. It also verified that two of them possess strong antimelanoma effect in concentration-dependent manners, especially on B16F10, A2058, MeWo, and A375 cells. Wound healing assay presented their excellent antimigratory effects. Through 3-N,3-N,6-N,6-N-Tetramethylacridine-3,6-diamine (acridine orange, AO) staining and Western blot, the autophagy induced by treatment was confirmed, including autophagy-related proteins (Atgs). By using annexin V–FITC/PI double-stain, the apoptosis was confirmed, and both components also triggered the cell cycle arrest and DNA damage. We demonstrated the correlations between the mitogen-activated protein kinase (MAPK) pathway and antimelanoma, such as caspase cascade activations. To further evaluate in vivo experiments, the inhibition of tumor cell growth was verified through the histopathological staining in a xenograft model. In this study, it was confirmed that Iso A and Sec A can encourage melanoma cell death via early autophagy and late apoptosis processes.
Collapse
|
6
|
Li J, Lu YR, Lin IF, Kang W, Chen HB, Lu HF, Wang HMD. Reversing UVB-induced photoaging with Hibiscus sabdariffa calyx aqueous extract. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:672-681. [PMID: 31583701 DOI: 10.1002/jsfa.10063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/14/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Hibiscus sabdariffa is commonly used in daily life and its extract is applied widely in food and cosmetics. However, it has not been evaluated for its anti-aging effects. RESULTS Hibiscus sabdariffa calyx aqueous extract (HSCAE) has shown potential collagenase activity suppression effects, together with tyrosinase activity inhibition, and anti-oxidation as a free radical scavenger. The current investigation demonstrated that HSCAE was not cytotoxic in skin fibroblasts, and it significantly decreased ultraviolet B (UVB)-induced reactive oxygen species (ROS) on a flow cytometry assay. Moreover, HSCAE reduced matrix metalloproteinase (MMP) expression, increased tissue inhibition of metalloproteinase (TIMP)-1 level, and enhanced collagen content by inhibiting collagenase activity. It also blocked mRNA and protein expressions of melanin production pathway key factors, including the microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP-1), and dopachrome tautomerase-2 (TRP-2). CONCLUSION These results demonstrated, for the first time, the potential of HSCAE as a natural antioxidant with the ability to maintain collagen production and to decrease melanin syntheses under UVB radiation, for anti-aging effects. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jian Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yi-Ru Lu
- Department of Bachelor Program of Biotechnology, National Chung Hsing University, Taichung City, Taiwan
| | - I-Fan Lin
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Wenyi Kang
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Henan University, Kaifeng, China
| | - Hong-Bin Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Hui-Min David Wang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung City, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, Taiwan
| |
Collapse
|
7
|
Inhibition of LPS-Induced Oxidative Damages and Potential Anti-Inflammatory Effects of Phyllanthus emblica Extract via Down-Regulating NF-κB, COX-2, and iNOS in RAW 264.7 Cells. Antioxidants (Basel) 2019; 8:antiox8080270. [PMID: 31382466 PMCID: PMC6721275 DOI: 10.3390/antiox8080270] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Phyllanthus emblica is an edible nutraceutical and functional food in the Asia area with medicinal and nutritive importance. The fruit extract of P. emblica is currently considered to be one of the effective functional foods for flesh maintenance and disease treatments because of its antioxidative and immunomodulatory properties. We examined the antioxidant abilities of the fruit extract powder by carrying out 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, iron reducing power, and metal chelating activity analysis and showed excellent antioxidative results. In 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the result showed that the samples had no cytotoxic effect on RAW 264.7 cells even at a high concentration of 2 mg/mL. To investigate its immunomodulatory function, our estimation was to treat it with lipopolysaccharide (LPS) in RAW 264.7 cells to present anti-inflammatory capacities. The extract decreased reactive oxygen species (ROS) production levels in a dose-dependent manner measured by flow cytometry. We also examined various inflammatory mRNAs and proteins, including nuclear factor-κB (NF-κB), inducible nitric oxide synthases (iNOS), and cyclooxygenase-2 (COX-2). In quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting assay, all three targets were decreased by the extract, also in a dose-dependent manner. In conclusion, P. emblica fruit extract powder not only lessened antioxidative stress damages, but also inhibited inflammatory reactions.
Collapse
|
8
|
Trofin AE, Trincă LC, Ungureanu E, Ariton AM. CUPRAC Voltammetric Determination of Antioxidant Capacity in Tea Samples by Using Screen-Printed Microelectrodes. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:8012758. [PMID: 31218091 PMCID: PMC6536952 DOI: 10.1155/2019/8012758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Measurement of antioxidant capacity represents an analytical major challenge in terms of accuracy, efficiency, rapid response, or low cost of detection methods. Quantification of antioxidant capacity of food samples using disposable screen-printed microelectrodes (SPMEs) was based on cyclic voltammetry versus open-circuit potential (CV vs OCP) and differential pulse voltammetry (DPV) as compared with spectrophotometric measurement of the CUPRAC reaction with 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox). The SPMEs are organic-resistant electrodes and thus compatible with food samples and organic solvents used to dissolve trolox. A micropipette was used to release a drop of 50 μL sample on the spotted surface of the SPME sensor/working electrode that was time programmed to function according to the working protocol. The SPME response was linearly correlated with trolox content. This preliminary demonstration was focused on the analysis of tea infusions, due to the simplicity and reproducibility of the samples' preparations involved. Analytical results of the antioxidant capacity (expressed as mol·L-1 trolox equivalents) of the tea samples showed a good agreement in the case of spectrophotometry and differential pulse voltammetry (R 2 > 0.998). DPV with SPME based on CUPRAC reactions was proven to be a promising approach for the characterization of antioxidant capacity of tea samples with rapid response, cost-effectiveness, and simplicity of operation.
Collapse
Affiliation(s)
- Alina Elena Trofin
- Department of Exact Sciences, University of Agricultural Sciences and Veterinary Medicine “Ion Ionescu de la Brad”, Iasi 700490, Romania
| | - Lucia Carmen Trincă
- Department of Exact Sciences, University of Agricultural Sciences and Veterinary Medicine “Ion Ionescu de la Brad”, Iasi 700490, Romania
| | - Elena Ungureanu
- Department of Exact Sciences, University of Agricultural Sciences and Veterinary Medicine “Ion Ionescu de la Brad”, Iasi 700490, Romania
| | - Adina Mirela Ariton
- Research and Development Center for Cattle Breeding Dancu, Iasi 707252, Romania
| |
Collapse
|