1
|
Suhardi V, Oktarina A, Niu Y, Sosa B, Retzky J, Greenblatt M, Ivashkiv L, Bostrom M, Yang X. A Murine Model of Non-Wear-Particle-Induced Aseptic Loosening. Biomimetics (Basel) 2024; 9:673. [PMID: 39590245 PMCID: PMC11592190 DOI: 10.3390/biomimetics9110673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The current murine models of peri-implant osseointegration failure are associated with wear particles. However, the current clinical osseointegration failure is not associated with wear particles. Here, we develop a murine model of osseointegration failure not associated with wear particles and validate it by comparing the cellular composition of interfacial tissues with human samples collected during total joint arthroplasty revision for aseptic loosening. MATERIALS AND METHODS Thirty-two 16-week-old female C57BL/6 mice underwent implantation with a press-fitted roughened titanium implant (Control, n = 11) to induce normal osseointegration and a press-fitted smooth polymethylmethacrylate implant (PMMA, n = 11), a loosely fitted smooth titanium implant (Smooth-Ti, n = 5) or a loosely fitted roughened titanium implant (Overdrill, n = 5) to induce osseointegration failure. Pullout testing was used to determine the strength of the bone-implant interface (n = 6 of each for Control and PMMA groups) at 2 weeks after implantation. Histology (n = 2/group) and immunofluorescence (n = 3/group) were used to determine the cellular composition of bone-implant interfacial tissue, and this was compared with two human samples. RESULTS Osseointegration failure was confirmed with grossly loosening implants and the presence of fibrous tissue identified via histology. The maximum pullout load in the PMMA group was 87% lower than in the Control group (2.8 ± 0.6 N vs. 21 ± 1.5 N, p < 0.001). With immunofluorescence, abundant fibroblasts (PDGFRα+ TCF4+ and PDGFRα+ Pu1+) were observed in osseointegration failure groups and the human samples, but not in controls. Interestingly, CD146+PDGFRα+ and LepR+PDGFRα+ mesenchymal progenitors, osteoblasts (OPN+), vascular endothelium (EMCN+) cells were observed in all groups, indicating dynamic osteogenic activity. Macrophages, only M2, were observed in conditions producing fibrous tissue. CONCLUSIONS In this newly developed non-wear-particle-related murine osseointegration failure model, the cellular composition of human and murine interfacial tissue implicates specific populations of fibroblasts in fibrous tissue formation and implies that these cells may derive from mesenchymal stem cells.
Collapse
Affiliation(s)
- Vincentius Suhardi
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA; (V.S.); (M.B.)
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
| | - Anastasia Oktarina
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
| | - Yingzhen Niu
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050052, China
| | - Branden Sosa
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA; (V.S.); (M.B.)
| | - Julia Retzky
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA; (V.S.); (M.B.)
| | - Matthew Greenblatt
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lionel Ivashkiv
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
| | - Mathias Bostrom
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA; (V.S.); (M.B.)
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
2
|
Kellens J, Berger P, Vandenneucker H. Metal wear debris generation in primary total knee arthroplasty: is it an issue? Acta Orthop Belg 2021; 87:681-695. [PMID: 35172435 DOI: 10.52628/87.4.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
More durable total knee arthroplasties (TKAs) are needed, due to the rising life expectancy, the higher activity levels of patients and the growing concerns about aseptic loosening being caused by metal hypersensitivity. In response, different hypoallergenic metal coatings have been developed for TKAs. However, possible adverse effects of these different metals (cobalt-chromium-molybdenum, zirconium, titanium and tantalum) have been neglected. The aim was to summarize the local and systemic adverse effects (including metal hypersensitivity), survival ratios, patient-reported outcome measures (PROMs) and the plasma metal ion concentrations of the different TKA coatings. A literature search on PubMed and EMBASE was performed. In total, 15 studies were found eligible. Common adverse effects of TKA were infection, loosening, pain, instability and hyper- coagulation disorders. Serious adverse effects related to TKA implants were not reported. The survival ratios and patient-reported outcome measures seem to confirm these good results. In contrast with chromium and cobalt, no significant differences were reported in the nickel, molybdenum and titanium concentrations. No significant differences between the hypoallergenic and standard TKA implants were found in terms of adverse effects, survival ratios and PROMs. A causal relationship between the common adverse effects and the different metals is unlikely. Due to the heterogeneity of the TKA implants used, no firm conclusions could be made. Further research with longer follow-up studies are needed to find possible adverse effects and differences. Thus far, the hypoallergenic implants seem to perform equal to the standard implants.
Collapse
|
3
|
Ryu DJ, Jung A, Ban HY, Kwak TY, Shin EJ, Gweon B, Lim D, Wang JH. Enhanced osseointegration through direct energy deposition porous coating for cementless orthopedic implant fixation. Sci Rep 2021; 11:22317. [PMID: 34785741 PMCID: PMC8595809 DOI: 10.1038/s41598-021-01739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022] Open
Abstract
Direct energy deposition (DED) is a newly developed 3D metal printing technique that can be utilized on a porous surface coating of joint implants, however there is still a lack of studies on what advantages DED has over conventional techniques. We conducted a systematic mechanical and biological comparative study of porous coatings prepared using the DED method and other commercially available technologies including titanium plasma spray (TPS), and powder bed fusion (PBF). DED showed higher porosity surface (48.54%) than TPS (21.4%) and PBF (35.91%) with comparable fatigue cycle. At initial cell adhesion, cells on DED and PBF surface appeared to spread well with distinct actin stress fibers through immunofluorescence study. It means that the osteoblasts bind more strongly to the DED and PBF surface. Also, DED surface showed higher cell proliferation (1.27 times higher than TPS and PBF) and osteoblast cell activity (1.28 times higher than PBF) for 2 weeks culture in vitro test. In addition, DED surface showed better bone to implant contact and new bone formation than TPS in in vivo study. DED surface also showed consistently good osseointegration performance throughout the early and late period of osseointegration. Collectively, these results show that the DED coating method is an innovative technology that can be utilized to make cementless joint implants.
Collapse
Affiliation(s)
- Dong Jin Ryu
- Department of Orthopedic Surgery, Inha University Hospital, 27 Inhang-Ro, Jung-Gu, Incheon, 22332, South Korea.,Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea
| | - Ara Jung
- Department of Mechanical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul, 05006, South Korea
| | - Hun Yeong Ban
- Department of Mechanical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul, 05006, South Korea
| | - Tae Yang Kwak
- Department of Mechanical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul, 05006, South Korea
| | - Eun Joo Shin
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Bomi Gweon
- Department of Mechanical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul, 05006, South Korea.
| | - Dohyung Lim
- Department of Mechanical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul, 05006, South Korea.
| | - Joon Ho Wang
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea. .,Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea.
| |
Collapse
|
4
|
Curculigoside Protects against Titanium Particle-Induced Osteolysis through the Enhancement of Osteoblast Differentiation and Reduction of Osteoclast Formation. J Immunol Res 2021; 2021:5707242. [PMID: 34285923 PMCID: PMC8275416 DOI: 10.1155/2021/5707242] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022] Open
Abstract
Wear particle-induced periprosthetic osteolysis is mainly responsible for joint replacement failure and revision surgery. Curculigoside is reported to have bone-protective potential, but whether curculigoside attenuates wear particle-induced osteolysis remains unclear. In this study, titanium particles (Ti) were used to stimulate osteoblastic MC3T3-E1 cells in the presence or absence of curculigoside, to determine their effect on osteoblast differentiation. Rat osteoclastic bone marrow stromal cells (BMSCs) were cocultured with Ti in the presence or absence of curculigoside, to evaluate its effect on osteoclast formation in vitro. Ti was also used to stimulate mouse calvaria to induce an osteolysis model, and curculigoside was administrated to evaluate its effect in the osteolysis model by micro-CT imaging and histopathological analyses. As the results indicated, in MC3T3-E1 cells, curculigoside treatment attenuated the Ti-induced inhibition on cell differentiation and apoptosis, increased alkaline phosphatase activity (ALP) and cell mineralization, and inhibited TNF-α, IL-1β, and IL-6 production and ROS generation. In BMSCs, curculigoside treatment suppressed the Ti-induced cell formation and suppressed the TNF-α, IL-1β, and IL-6 production and F-actin ring formation. In vivo, curculigoside attenuated Ti-induced bone loss and histological damage in murine calvaria. Curculigoside treatment also reversed the RANK/RANKL/OPG and NF-κB signaling pathways, by suppressing the RANKL and NF-κB expression, while activating the OPG expression. Our study demonstrated that curculigoside treatment was able to attenuate wear particle-induced periprosthetic osteolysis in in vivo and in vitro experiments, promoted osteoblastic MC3T3-E1 cell differentiation, and inhibited osteoclast BMSC formation. It suggests that curculigoside may be a potential pharmaceutical agent for wear particle-stimulated osteolysis therapy.
Collapse
|
5
|
Liu F, Li HY, Wang Z, Zhang HN, Wang YZ, Xu H. Carboxymethyl chitosan reduces inflammation and promotes osteogenesis in a rabbit knee replacement model. BMC Musculoskelet Disord 2020; 21:775. [PMID: 33234136 PMCID: PMC7684978 DOI: 10.1186/s12891-020-03803-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major causes of failure after total knee arthroplasty (TKA) include prosthesis loosening and infection. This study aimed to investigate the role of carboxymethyl chitosan (CMC) in knee arthroplasty. METHODS A total of 20 New Zealand white rabbits that were divided into two groups (10 in the control group and 10 in the chitosan group) were included in the study. They underwent TKA surgery, and all were implanted with titanium rod prostheses; the prosthesis in the chitosan group was coated with CMC. After 12 weeks, all rabbits were euthanized, and the following analyses of some specific surface membrane tissues around the prosthesis were performed: X-ray analysis; micro-computed tomography scan; haematoxylin and eosin, Van Gieson, and Von Kossa staining; reverse transcription polymerase chain reaction; and Western Blotting. RESULTS The result of CCK8 test showed CMC can promote cell proliferation and increase cell viability. Radiological result showed better amount of bone deposits and more bone formation in the chitosan group. HE staining result showed CMC reduces inflammation around the prosthesis. The VG and Von Kossa staining results showed CMC can promote bone deposition around prosthesis. And according to the results of PCR and WB, the OCN content was higher in the chitosan group, while the MMPs content was lower. The chitosan group has an increased OPG/RANKL ratio than the control group. CONCLUSION CMC can effectively inhibit the inflammatory response around the prosthesis and osteoclast activation and promote osteogenesis by interfering with the osteoprotegerin/receptor activator of nuclear factor kappa-Β ligand/receptor activator of nuclear factor kappa-Β signalling pathway.
Collapse
Affiliation(s)
- Feng Liu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.,Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai-Yan Li
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhen Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.,Center for Musculoskeletal Surgery, Charité University Medicine Berlin, Berlin, Germany
| | - Hai-Ning Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Ying-Zhen Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Hao Xu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
6
|
Zhu X, Zhang Y, Yang H, He F, Lin J. Melatonin suppresses Ti-particle-induced inflammatory osteolysis via activation of the Nrf2/Catalase signaling pathway. Int Immunopharmacol 2020; 88:106847. [PMID: 32771943 DOI: 10.1016/j.intimp.2020.106847] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/27/2020] [Accepted: 07/26/2020] [Indexed: 12/15/2022]
Abstract
Aseptic loosening induced by osteolysis is recognized as a late complication of joint replacement. Osteoclasts stimulated by Titanium (Ti) nanoparticles play a critical role in periprosthetic osteolysis. Emerging evidence indicates that melatonin, a hormone primarily synthesized by the pineal gland, has been shown an inhibitory effect on osteoclast formation. However, it is unclear whether melatonin could suppress Ti-particle-induced osteoclastogenesis and what the underlying mechanisms were involved in. Herein, we aimed to investigate the effect of melatonin on osteoclast differentiation and osteolysis stimulated by Ti particles. Our results showed that the in vitro osteoclastogenesis of mouse bone marrow monocytes (BMMs) stimulated by Ti particles was suppressed by melatonin treatments in a dose-dependent manner. Further experiments revealed that melatonin up-regulated the expression of the nuclear factor erythroid 2-related factor 2 (Nrf2) and catalase (CAT) at both the mRNA and protein levels. The role of the Nrf2/CAT signaling pathway was confirmed by the fact that silencing the expression of NRF2 by small interfering RNA (siRNA) counteracted the anti-osteolysis effects of melatonin. Furthermore, in vivo intraperitoneal injection of melatonin successfully attenuated periprosthetic osteolysis induced by Ti particles in a murine calvarial model. Our findings demonstrate that melatonin is a promising therapeutic agent for treating periprosthetic osteolysis by inhibiting the Ti-particle-stimulated osteoclastogenesis via activation of the Nrf2/Catalase signaling pathway.
Collapse
Affiliation(s)
- Xu Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Yazhong Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China.
| | - Jun Lin
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
7
|
Osteo-Compatibility of 3D Titanium Porous Coating Applied by Direct Energy Deposition (DED) for a Cementless Total Knee Arthroplasty Implant: in Vitro and in Vivo Study. J Clin Med 2020; 9:jcm9020478. [PMID: 32050490 PMCID: PMC7074176 DOI: 10.3390/jcm9020478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/27/2022] Open
Abstract
Direct energy deposition (DED) technology has gained increasing attention as a new implant surface technology that replicates the porous structure of natural bones facilitating osteoblast colonization and bone ingrowth. However, concerns have arisen over osteolysis or chronic inflammation that could be caused by Cobalt-chrome (CoCr) alloy and Titanium (Ti) nanoparticles produced during the fabrication process. Here, we evaluated whether a DED Ti-coated on CoCr alloy could improve osteoblast colonization and osseointegration in vitro and in vivo without causing any significant side effects. Three types of implant CoCr surfaces (smooth, sand-blasted and DED Ti-coated) were tested and compared. Three cell proliferation markers and six inflammatory cytokine markers were measured using SaOS2 osteoblast cells. Subsequently, X-ray and bone histomorphometric analyses were performed after implantation into rabbit femur. There were no differences between the DED group and positive control in cytokine assays. However, in the 5-bromo-2′-deoxyuridine (BrdU) assay the DED group exhibited even higher values than the positive control. For bone histomorphometry, DED was significantly superior within the 1000 µm bone area. The results suggest that DED Ti-coated metal printing does not affect the osteoblast viability or impair osseointegration in vitro and in vivo. Thus, this technology is biocompatible for coating the surfaces of cementless total knee arthroplasty (TKA) implants.
Collapse
|
8
|
Ryu DJ, Sonn CH, Hong DH, Kwon KB, Park SJ, Ban HY, Kwak TY, Lim D, Wang JH. Titanium Porous Coating Using 3D Direct Energy Deposition (DED) Printing for Cementless TKA Implants: Does It Induce Chronic Inflammation? MATERIALS 2020; 13:ma13020472. [PMID: 31963803 PMCID: PMC7014007 DOI: 10.3390/ma13020472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
Because of the recent technological advances, the cementless total knee arthroplasty (TKA) implant showed satisfactory implant survival rate. Newly developed 3D printing direct energy deposition (DED) has superior resistance to abrasion as compared to traditional methods. However, there is still concern about the mechanical stability and the risk of osteolysis by the titanium (Ti) nanoparticles. Therefore, in this work, we investigated whether DED Ti-coated cobalt-chrome (CoCr) alloys induce chronic inflammation reactions through in vitro and in vivo models. We studied three types of implant surfaces (smooth, sand-blasted, and DED Ti-coated) to compare their inflammatory reaction. We conducted the in vitro effect of specimens using the cell counting kit-8 (CCK-8) assay and an inflammatory cytokine assay. Subsequently, in vivo analysis of the immune profiling, cytokine assay, and histomorphometric evaluation using C57BL/6 mice were performed. There were no significant differences in the CCK-8 assay, the cytokine assay, and the immune profiling assay. Moreover, there were no difference for semi-quantitative histomorphometry analysis at 4 and 8 weeks among the sham, smooth, and DED Ti-coated samples. These results suggest that DED Ti-coated printing technique do not induce chronic inflammation both in vitro and in vivo. It has biocompatibility for being used as a surface coating of TKA implant.
Collapse
Affiliation(s)
- Dong Jin Ryu
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (D.J.R.); (K.B.K.); (S.J.P.)
| | - Chung-Hee Sonn
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (C.-H.S.); (D.H.H.)
| | - Da Hee Hong
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (C.-H.S.); (D.H.H.)
| | - Kyeu Back Kwon
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (D.J.R.); (K.B.K.); (S.J.P.)
| | - Sang Jun Park
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (D.J.R.); (K.B.K.); (S.J.P.)
| | - Hun Yeong Ban
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Korea; (H.Y.B.); (T.Y.K.)
| | - Tae Yang Kwak
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Korea; (H.Y.B.); (T.Y.K.)
| | - Dohyung Lim
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Korea; (H.Y.B.); (T.Y.K.)
- Correspondence: (D.L.); (J.H.W.); Tel.: +82-2-3408-3672 (D.L.); +82-2-3410-3507 (J.H.W.); Fax: +82-2-3408-4333 (D.L.); +82-2-3410-0061 (J.H.W.)
| | - Joon Ho Wang
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (D.J.R.); (K.B.K.); (S.J.P.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Correspondence: (D.L.); (J.H.W.); Tel.: +82-2-3408-3672 (D.L.); +82-2-3410-3507 (J.H.W.); Fax: +82-2-3408-4333 (D.L.); +82-2-3410-0061 (J.H.W.)
| |
Collapse
|