1
|
Dey M, Skipar P, Bartnik E, Piątkowski J, Sulejczak D, Czarnecka AM. MicroRNA signatures in osteosarcoma: diagnostic insights and therapeutic prospects. Mol Cell Biochem 2024:10.1007/s11010-024-05135-5. [PMID: 39419925 DOI: 10.1007/s11010-024-05135-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Osteosarcoma (OSa) is the most prevalent primary malignant bone tumor in children and adolescents, characterized by complex genetic and epigenetic alterations. Traditional treatments face significant challenges due to high rates of drug resistance and lack of targeted therapies. Recent advances in microRNA (miRNA) research have opened new avenues for understanding and treating osteosarcoma. This review explores the many critical functions of miRNAs in osteosarcoma, particularly their potential for clinical use. The review highlights two key areas where miRNAs could be beneficial. Firstly, miRNAs can act as biomarkers for diagnosing osteosarcoma and predicting patient prognosis. Secondly, specific miRNAs can regulate cellular processes like proliferation, cell death, migration, and even resistance to chemotherapy drugs in osteosarcoma. This ability to target multiple pathways within cancer cells makes miRNA-based therapies highly promising. Additionally, though the interaction between miRNAs and circular RNAs (circRNAs) falls outside the scope of the paper, it has also been discussed briefly. While miRNA-based therapies offer exciting possibilities for targeting multiple pathways in osteosarcoma, challenges remain. Efficient delivery, potential off-target effects, tumor complexity, and rigorous testing are hurdles to overcome before these therapies can reach patients. Despite these challenges, continued research and collaboration among scientists, clinicians, and regulatory bodies hold the promise of overcoming them. This collaborative effort can pave the way for the development of safe and effective miRNA-based treatments for osteosarcoma.
Collapse
Affiliation(s)
- Mritunjoy Dey
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Cancer Research Institute in Warsaw, 02-781, Warsaw, Poland.
| | - Palina Skipar
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Cancer Research Institute in Warsaw, 02-781, Warsaw, Poland
- Faculty of Medicine, Warsaw Medical University, 02-091, Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
| | - Jakub Piątkowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna M Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Cancer Research Institute in Warsaw, 02-781, Warsaw, Poland
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Chen Y, Li BX, Niu TT, Yang SJ, Wu LC, Shi LH, Zou DB, Wu NN, Sheng LX, Yan X, Ouyang GF, Mu QT. Circ_0012152 Accelerates Acute Myeloid Leukemia Progression through the miR-652-3p/SOX4 Axis. Curr Med Sci 2024; 44:611-622. [PMID: 38842772 DOI: 10.1007/s11596-024-2878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/03/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by abnormal myeloid blast expansion. Recent studies have demonstrated that circular RNAs play a role in AML pathogenesis. In this study, we aimed to investigate the clinical significance of circ_0012152 in AML and elucidate its underlying molecular mechanism in the pathogenesis of this condition. METHODS Circ_0012152 expression was detected by quantitative real-time polymerase chain reaction in samples obtained from 247 patients with AML and 40 healthy controls. A systematic analysis of clinical characteristics and prognostic factors was also conducted. Cell growth was assessed using the Cell Counting Kit-8 (CCK-8) assay, and apoptosis and cell cycle progression were evaluated by flow cytometry. Moreover, RNA pull-down was performed to identify target microRNAs, and transcriptome RNA sequencing and bioinformatics analyses were utilized to identify downstream mRNA targets. RESULTS Circ_0012152 was significantly upregulated in samples from patients with AML and served as an independent adverse prognostic factor for overall survival (OS) (hazard ratio: 2.357; 95% confidence interval 1.258-4.415). The circ_0012152 knockdown reduced cell growth, increased apoptosis, and inhibited cell cycle progression in AML cell lines. RNA pull-down and sequencing identified miR-652-3p as a target microRNA of circ_0012152. Cell growth inhibition by circ_0012152 knockdown was significantly relieved by miR-652-3p inhibitors. We suggested that miR-652-3p targeted SOX4, as the decrease in SOX4 expression resulting from circ_0012152 knockdown was upregulated by miR-652-3p inhibitors in AML cells. CONCLUSION Circ_0012152 is an independent poor prognostic factor for OS in AML, and it promotes AML cell growth by upregulating SOX4 through miR-652-3p.
Collapse
Affiliation(s)
- Ying Chen
- Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, Ningbo, 315300, China
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China
| | - Bi-Xia Li
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, 315300, China
| | - Ting-Ting Niu
- Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, Ningbo, 315300, China
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China
| | - Shu-Jun Yang
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, 315300, China
| | - Li-Chao Wu
- School of Medicine, Hangzhou City University, Zhejiang University, Hangzhou, 310000, China
| | - Le-Huai Shi
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China
| | - Duo-Bing Zou
- Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, Ningbo, 315300, China
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China
| | - Ning-Ning Wu
- Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, Ningbo, 315300, China
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China
| | - Li-Xia Sheng
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, 315300, China
| | - Xiao Yan
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China.
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, 315300, China.
| | - Gui-Fang Ouyang
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China.
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, 315300, China.
| | - Qi-Tian Mu
- Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, Ningbo, 315300, China.
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, 315300, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315300, China.
| |
Collapse
|
3
|
Barrios-Palacios D, Organista-Nava J, Balandrán JC, Alarcón-Romero LDC, Zubillaga-Guerrero MI, Illades-Aguiar B, Rivas-Alarcón AA, Diaz-Lucas JJ, Gómez-Gómez Y, Leyva-Vázquez MA. The Role of miRNAs in Childhood Acute Lymphoblastic Leukemia Relapse and the Associated Molecular Mechanisms. Int J Mol Sci 2023; 25:119. [PMID: 38203290 PMCID: PMC10779195 DOI: 10.3390/ijms25010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children worldwide. Although ALL patients' overall survival rates in wealthy countries currently surpass 80%, 15-20% of patients still experience relapse. The underlying mechanisms of relapse are still not fully understood, and little progress has been made in treating refractory or relapsed disease. Disease relapse and treatment failure are common causes of leukemia-related death. In ALL relapse, several gene signatures have been identified, but it is also important to study miRNAs involved in ALL relapse in an effort to avoid relapse and to achieve better survival rates since miRNAs regulate target genes that participate in signaling pathways involved in relapse, such as those related to drug resistance, survival signals, and antiapoptotic mechanisms. Several miRNAs, such as miR-24, miR-27a, miR-99/100, miR-124, miR-1225b, miR-128b, miR-142-3p, miR-155 and miR-335-3p, are valuable biomarkers for prognosis and treatment response in ALL patients. Thus, this review aimed to analyze the primary miRNAs involved in pediatric ALL relapse and explore the underlying molecular mechanisms in an effort to identify miRNAs that may be potential candidates for anti-ALL therapy soon.
Collapse
Affiliation(s)
- Dalia Barrios-Palacios
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (D.B.-P.); (J.O.-N.); (B.I.-A.); (A.A.R.-A.); (J.J.D.-L.)
| | - Jorge Organista-Nava
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (D.B.-P.); (J.O.-N.); (B.I.-A.); (A.A.R.-A.); (J.J.D.-L.)
| | - Juan Carlos Balandrán
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA;
| | - Luz del Carmen Alarcón-Romero
- Laboratorio de Citopatología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (L.d.C.A.-R.); (M.I.Z.-G.)
| | - Ma Isabel Zubillaga-Guerrero
- Laboratorio de Citopatología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (L.d.C.A.-R.); (M.I.Z.-G.)
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (D.B.-P.); (J.O.-N.); (B.I.-A.); (A.A.R.-A.); (J.J.D.-L.)
| | - Alinne Ayulieth Rivas-Alarcón
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (D.B.-P.); (J.O.-N.); (B.I.-A.); (A.A.R.-A.); (J.J.D.-L.)
| | - Jessica Julieth Diaz-Lucas
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (D.B.-P.); (J.O.-N.); (B.I.-A.); (A.A.R.-A.); (J.J.D.-L.)
| | - Yazmín Gómez-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (D.B.-P.); (J.O.-N.); (B.I.-A.); (A.A.R.-A.); (J.J.D.-L.)
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (D.B.-P.); (J.O.-N.); (B.I.-A.); (A.A.R.-A.); (J.J.D.-L.)
| |
Collapse
|
4
|
Li M, Zhai P, Mu X, Song J, Zhang H, Su J. Hypoxic BMSC-derived exosomal miR-652-3p promotes proliferation and metastasis of hepatocarcinoma cancer cells via targeting TNRC6A. Aging (Albany NY) 2023; 15:12780-12793. [PMID: 37976119 DOI: 10.18632/aging.205025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 08/20/2023] [Indexed: 11/19/2023]
Abstract
Cancer microenvironment plays an important role in the proliferation and metastasis of hepatocarcinoma cancer cells (HCC). Exosomes from bone marrow-derived mesenchymal stem cells (BMSCs) are a component of the cancer microenvironment. In this study, we reveal that miRNA-652-3P from BMSC-derived exosomes promotes proliferation and metastasis in HCC. The ability of cancer proliferation, migration and invasion can be evaluated after co-culture by CCK-8, wound healing and transwell assay. Isolated exosomes were identified by transmission electron microscopy (TEM) and the biomarkers of the purified exosomes were showed in West-blotting (WB). MiR-652-3p was detected in the HepG2 and 7721 after co-culturing with exosome derived from BMSCs under different conditions. Target authentication was performed by a luciferase reporter assay to confirm the presumptive target of miR-652-3p. After overexpressing miR-652-3p, the mRNA and protein expression level of TNRC6A in HCC was examined by q-PCR and WB. Further, we observed greater miR-652-3p upregulation in hypoxic BMSCs-exosomes than in normal- exosomes. In addition, a miR-652-3p inhibitor attenuates the proliferation and metastasis of HCC cells after co-culturing with BMSCs. Our data demonstrate that hypoxic BMSCs-derived exosomal miR-652-3p promotes proliferation in HCC cells by inhibiting TNRC6A. The BMSCs-derived exosomal miR-652-3p may help find patient-targeted therapies in hepatocarcinoma cancer.
Collapse
Affiliation(s)
- Mei Li
- Department of Minimally Invasive, Shaanxi Cancer Hospital, Xi’an 710061, Shaanxi, China
| | - Pengtao Zhai
- Department of Minimally Invasive, Shaanxi Cancer Hospital, Xi’an 710061, Shaanxi, China
| | - Xudong Mu
- Department of Minimally Invasive, Shaanxi Cancer Hospital, Xi’an 710061, Shaanxi, China
| | - Juanrong Song
- Department of Minimally Invasive, Shaanxi Cancer Hospital, Xi’an 710061, Shaanxi, China
| | - Huilin Zhang
- Digestive Endoscopy Treatment Center, Xi’an International Medical Center Hospital, Gaoxin, Xi’an 710100, Shaanxi, China
| | - Juan Su
- Department of Gastroenterology, Xi’an International Medical Center Hospital, Gaoxin, Xi’an 710100, Shaanxi, China
| |
Collapse
|
5
|
MiRNAs in Hematopoiesis and Acute Lymphoblastic Leukemia. Int J Mol Sci 2023; 24:ijms24065436. [PMID: 36982511 PMCID: PMC10049736 DOI: 10.3390/ijms24065436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 03/14/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common kind of pediatric cancer. Although the cure rates in ALL have significantly increased in developed countries, still 15–20% of patients relapse, with even higher rates in developing countries. The role of non-coding RNA genes as microRNAs (miRNAs) has gained interest from researchers in regard to improving our knowledge of the molecular mechanisms underlying ALL development, as well as identifying biomarkers with clinical relevance. Despite the wide heterogeneity reveled in miRNA studies in ALL, consistent findings give us confidence that miRNAs could be useful to discriminate between leukemia linages, immunophenotypes, molecular groups, high-risk-for-relapse groups, and poor/good responders to chemotherapy. For instance, miR-125b has been associated with prognosis and chemoresistance in ALL, miR-21 has an oncogenic role in lymphoid malignancies, and the miR-181 family can act either as a oncomiR or tumor suppressor in several hematological malignancies. However, few of these studies have explored the molecular interplay between miRNAs and their targeted genes. This review aims to state the different ways in which miRNAs could be involved in ALL and their clinical implications.
Collapse
|
6
|
Zhou Z, Cao Q, Diao Y, Wang Y, Long L, Wang S, Li P. Non-coding RNA-related antitumor mechanisms of marine-derived agents. Front Pharmacol 2022; 13:1053556. [PMID: 36532760 PMCID: PMC9752855 DOI: 10.3389/fphar.2022.1053556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 09/26/2023] Open
Abstract
In the last two decades, natural active substances have attracted great attention in developing new antitumor drugs, especially in the marine environment. A series of marine-derived compounds or derivatives with potential antitumor effects have been discovered and developed, but their mechanisms of action are not well understood. Emerging studies have found that several tumor-related signaling pathways and molecules are involved in the antitumor mechanisms of marine-derived agents, including noncoding RNAs (ncRNAs). In this review, we provide an update on the regulation of marine-derived agents associated with ncRNAs on tumor cell proliferation, apoptosis, cell cycle, invasion, migration, drug sensitivity and resistance. Herein, we also describe recent advances in marine food-derived ncRNAs as antitumor agents that modulate cross-species gene expression. A better understanding of the antitumor mechanisms of marine-derived agents mediated, regulated, or sourced by ncRNAs will provide new biomarkers or targets for potential antitumor drugs from preclinical discovery and development to clinical application.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qianqian Cao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yujing Diao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Linhai Long
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Shoushi Wang
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Janowski M, Ulańczyk Z, Łuczkowska K, Sobuś A, Rogińska D, Pius-Sadowska E, Gniot M, Kozłowski K, Lewandowski K, Helbig G, Machaliński B, Paczkowska E. Molecular Changes in Chronic Myeloid Leukemia During Tyrosine Kinase Inhibitors Treatment. Focus on Immunological Pathways. Onco Targets Ther 2022; 15:1123-1141. [PMID: 36238136 PMCID: PMC9553433 DOI: 10.2147/ott.s371847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction The aim of our research was to investigate changes in the molecular background of the immune response in the chronic phase (CP) of chronic myeloid leukaemia (CML) during treatment with tyrosine kinase inhibitors (TKIs). Methods Global gene and miRNA expression profiles were assessed using genome-wide RNA and miRNA microarray technology in bone marrow mononuclear cells. Fifty-one patients were recruited, and bone marrow samples were taken at diagnosis before treatment with TKIs and after 3, 6, and 12 months of treatment with TKIs. The largest number of upregulated genes was observed when the 0-month group (time of diagnosis) was compared to the 3-month group; 1774 genes were significantly upregulated, and 390 genes were significantly downregulated. Discussion Upregulated biological processes according to gene ontology (GO) classification involved basic cellular processes such as cell division, cell cycle, cell-cell adhesion, protein transport, mitotic nuclear division, apoptosis, and DNA replication. Differentially expressed miRNAs were annotated using GO classification to several immunity-related processes, including the T cell receptor signalling pathway, T cell costimulation, immune response, and inflammatory response. TKI therapy exerts a significant impact on cellular cycle processes and T-cell activation, which was proven at the molecular level.
Collapse
Affiliation(s)
- Michał Janowski
- Department of Hematology and Transplantology, Pomeranian Medical University, Szczecin, Poland
| | - Zofia Ulańczyk
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Anna Sobuś
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Michał Gniot
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznań, Poland
| | - Krzysztof Kozłowski
- Department of Constitutional Law, Faculty of Law and Administration, Jagiellonian University in Krakow, Krakow, Poland
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznań, Poland
| | - Grzegorz Helbig
- Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, Katowice, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland,Correspondence: Edyta Paczkowska, Email
| |
Collapse
|
8
|
Inhibition of miR-652-3p Regulates Lipid Metabolism and Inflammatory Cytokine Secretion of Macrophages to Alleviate Atherosclerosis by Improving TP53 Expression. Mediators Inflamm 2022; 2022:9655097. [PMID: 36248191 PMCID: PMC9568360 DOI: 10.1155/2022/9655097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose The aim was to elucidate the regulatory function of miR-652-3p on lipid metabolism and inflammatory cytokine secretion of macrophages in atherosclerosis. Methods miR-652-3p level in atherosclerosis patients, ox-LDL-treated macrophages, and their controls were monitored by Q-PCR. After ox-LDL treatment and miR-652-3p mimic, si-TP53 and their controls transfection, ELISA, and Q-PCR assays were used to detect IL-1ß, IL-6, and TNF-α levels. oil red O staining was processed to verify cholesterol accumulation. CE/TC and lipid metabolism were also detected. The protein levels of ABCA1, ABCG1, PPARα, CRT1, ADRP, and ALBP were detected by western blot assay. Based on the TargetScan database, the TP53 3′UTR region had complementary bases with miR-652-3p, which was also verified by dual-luciferase reporter gene assay. Finally, the regulation of miR-652-3p and TP53 was confirmed by rescue assay in atherosclerosis. Results miR-652-3p is highly expressed in atherosclerosis, miR-652-3p inhibitor decreased IL-1β, IL-6, and TNF-α expression after ox-LDL treatment. Knockdown of miR-652-3p reduces foam formation in ox-LDL-treated macrophages. miR-652-3p inhibitor ameliorates cholesterol accumulation and lipid metabolism disorder. miR-652-3p negatively regulated TP53 in atherosclerosis. Si-TP53 rescued the effect of miR-652 inhibitor in atherosclerosis. Conclusion miR-652-3p regulates the lipid metabolism of macrophages to alleviate atherosclerosis by inhibiting TP53 expression. It might be a potential target for atherosclerosis treatment.
Collapse
|
9
|
MicroRNAs and the Diagnosis of Childhood Acute Lymphoblastic Leukemia: Systematic Review, Meta-Analysis and Re-Analysis with Novel Small RNA-Seq Tools. Cancers (Basel) 2022; 14:cancers14163976. [PMID: 36010971 PMCID: PMC9406077 DOI: 10.3390/cancers14163976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary MicroRNAs (miRNAs) have been under the spotlight for the last three decades. These non-coding RNAs seem to be dynamic regulators of mRNA stability and translation, in addition to interfering with transcription. Circulating miRNAs play a critical role in cell-to-cell interplay; therefore, they can serve as disease biomarkers. Meta-analysis of published data revealed that the CC genotype of rs4938723 in pri-miR-34b/c and the TT genotype of rs543412 in miR-100 confer protection against acute lymphoblastic leukemia (ALL) in children. Reanalysis of small RNA-seq data with novel tools identified significantly overexpressed members of the miR-128, miR-181, miR-130 and miR-17 families and significantly lower expression of miR-30, miR-24-2 and miR143~145 clusters, miR-574 and miR-618 in pediatric T-ALL cases compared with controls. Inconsistencies in methodology and study designs in most published material preclude reproducibility, and further cohort studies need to be conducted in order to empower novel tools, such as ALLSorts and RNAseqCNV. Abstract MicroRNAs (miRNAs) have been implicated in childhood acute lymphoblastic leukemia (ALL) pathogenesis. We performed a systematic review and meta-analysis of miRNA single-nucleotide polymorphisms (SNPs) in childhood ALL compared with healthy children, which revealed (i) that the CC genotype of rs4938723 in pri-miR-34b/c and the TT genotype of rs543412 in miR-100 confer protection against ALL occurrence in children; (ii) no significant association between rs2910164 genotypes in miR-146a and childhood ALL; and (iii) SNPs in DROSHA, miR-449b, miR-938, miR-3117 and miR-3689d-2 genes seem to be associated with susceptibility to B-ALL in childhood. A review of published literature on differential expression of miRNAs in children with ALL compared with controls revealed a significant upregulation of the miR-128 family, miR-130b, miR-155, miR-181 family, miR-210, miR-222, miR-363 and miR-708, along with significant downregulation of miR-143 and miR-148a, seem to have a definite role in childhood ALL development. MicroRNA signatures among childhood ALL subtypes, along with differential miRNA expression patterns between B-ALL and T-ALL cases, were scrutinized. With respect to T-ALL pediatric cases, we reanalyzed RNA-seq datasets with a robust and sensitive pipeline and confirmed the significant differential expression of hsa-miR-16-5p, hsa-miR-19b-3p, hsa-miR-92a-2-5p, hsa-miR-128-3p (ranked first), hsa-miR-130b-3p and -5p, hsa-miR-181a-5p, -2-3p and -3p, hsa-miR-181b-5p and -3p, hsa-miR-145-5p and hsa-miR-574-3p, as described in the literature, along with novel identified miRNAs.
Collapse
|
10
|
Sbirkov Y, Vergov B, Mehterov N, Sarafian V. miRNAs in Lymphocytic Leukaemias-The miRror of Drug Resistance. Int J Mol Sci 2022; 23:ijms23094657. [PMID: 35563051 PMCID: PMC9103677 DOI: 10.3390/ijms23094657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Refractory disease and relapse remain the main causes of cancer therapy failure. Refined risk stratification, treatment regimens and improved early diagnosis and detection of minimal residual disease have increased cure rates in malignancies like childhood acute lymphoblastic leukaemia (ALL) to 90%. Nevertheless, overall survival in the context of drug resistance remains poor. The regulatory role of micro RNAs (miRNAs) in cell differentiation, homeostasis and tumorigenesis has been under extensive investigation in different cancers. There is accumulating data demonstrating the significance of miRNAs for therapy outcomes in lymphoid malignancies and some direct demonstrations of the interplay between these small molecules and drug response. Here, we summarise miRNAs' impact on chemotherapy resistance in adult and paediatric ALL and chronic lymphocytic leukaemia (CLL). The main focus of this review is on the modulation of particular signaling pathways like PI3K-AKT, transcription factors such as NF-κB, and apoptotic mediators, all of which are bona fide and pivotal elements orchestrating the survival of malignant lymphocytic cells. Finally, we discuss the attractive strategy of using mimics, antimiRs and other molecular approaches pointing at miRNAs as promising therapeutic targets. Such novel strategies to circumvent ALL and CLL resistance networks may potentially improve patients' responses and survival rates.
Collapse
Affiliation(s)
- Yordan Sbirkov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
- Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Correspondence: (Y.S.); (V.S.)
| | - Bozhidar Vergov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
| | - Nikolay Mehterov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
- Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
- Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Correspondence: (Y.S.); (V.S.)
| |
Collapse
|
11
|
Shirazi-Tehrani E, Vafadar A, Keshavarzi M, Firouzabadi N. Anticancer properties of vincristine is modulated by microRNAs in acute lymphoblastic leukemia Nalm6 cell line. Anticancer Drugs 2022; 33:e680-e685. [PMID: 34459460 DOI: 10.1097/cad.0000000000001234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Precursor B-cell acute lymphoblastic leukemia (B-ALL), a highly diverse disease, is the most widespread pediatric malignancy characterized by cytogenetic and molecular abnormalities such as altered microRNA (miR) expression signatures. MiRs are a class of short noncoding RNAs. Dysregulation in the expression of miRs plays a crucial role in different types of cancers. Vincristine is an antineoplastic drug with a broad spectrum of activity against different hematologic malignancies and is the first-line treatment for B-ALL. Previous studies have proposed miR-17 and miR-181/b as oncomirs and miR-34/a as a tumor suppressor in Nalm6 cells, thus in the current study, we investigated the effects of vincristine treatment on the expression of miR-17, miR-34/a and miR-181/b expression levels. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay was conducted to estimate the optimal concentration of vincristine in the Nalm-6 cell line. Expression of miRs was calculated using real-time PCR. Our results showed significant downregulation of miR-17 (FC = 0.226; P < 0.0004) in Nalm6 cells after vincristine treatment. Conversely, miR-34/a (FC = 4.823; P < 0.0001) was significantly upregulated. Also, the expression of miR-181/b (FC = 0.156; P < 0.3465) was not significantly different between the vincristine treated group and the control group. In conclusion, it is proposed that one of the mechanisms by which vincristine improves B-ALL is by modulating the expression of specific miRs. These specific miRs will serve as good diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Elham Shirazi-Tehrani
- Department of Pharmacology & Toxicology, School of Pharmacy
- Pharmaceutical Sciences Research Center
| | - Asma Vafadar
- Diagnostic Laboratory Sciences and Technology Research Center
- Department of Medical Biotechnology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy
- Pharmaceutical Sciences Research Center
| |
Collapse
|
12
|
Boldrin E, Gaffo E, Niedermayer A, Boer JM, Zimmermann M, Weichenhan D, Claus R, Münch V, Sun Q, Enzenmüller S, Seyfried F, Demir S, Zinngrebe J, Cario G, Schrappe M, Den Boer ML, Plass C, Debatin KM, Te Kronnie G, Bortoluzzi S, Meyer LH. MicroRNA-497/195 is tumor suppressive and cooperates with CDKN2A/B in pediatric acute lymphoblastic leukemia. Blood 2021; 138:1953-1965. [PMID: 34098582 DOI: 10.1182/blood.2020007591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 05/24/2021] [Indexed: 11/20/2022] Open
Abstract
We previously identified an association of rapid engraftment of patient-derived leukemia cells transplanted into NOD/SCID mice with early relapse in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In a search for the cellular and molecular profiles associated with this phenotype, we investigated the expression of microRNAs (miRNAs) in different engraftment phenotypes and patient outcomes. We found high expression of miR-497 and miR-195 (hereafter miR-497/195) in patient-derived xenograft samples with slow engraftment derived from patients with favorable outcome. In contrast, epigenetic repression and low expression of these miRNAs was observed in rapidly engrafting samples associated with early relapse. Overexpression of miR-497/195 in patient-derived leukemia cells suppressed in vivo growth of leukemia and prolonged recipient survival. Conversely, inhibition of miR-497/195 led to increased leukemia cell growth. Key cell cycle regulators were downregulated upon miR-497/195 overexpression, and we identified cyclin-dependent kinase 4 (CDK4)- and cyclin-D3 (CCND3)-mediated control of G1/S transition as a principal mechanism for the suppression of BCP-ALL progression by miR-497/195. The critical role for miR-497/195-mediated cell cycle regulation was underscored by finding (in an additional independent series of patient samples) that high expression of miR-497/195 together with a full sequence for CDKN2A and CDKN2B (CDKN2A/B) was associated with excellent outcome, whereas deletion of CDKN2A/B together with low expression of miR-497/195 was associated with clearly inferior relapse-free survival. These findings point to the cooperative loss of cell cycle regulators as a new prognostic factor indicating possible therapeutic targets for pediatric BCP-ALL.
Collapse
Affiliation(s)
- Elena Boldrin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- Department of Biology, University of Padua, Padua, Italy
| | - Enrico Gaffo
- Department of Molecular Medicine, Padua University, Padua, Italy
| | - Alexandra Niedermayer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Medical School Hannover, Hannover, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany
| | - Rainer Claus
- Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany
- Department of Hematology/Oncology, Augsburg University Medical Center, Augsburg, Germany
| | - Vera Münch
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Qian Sun
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Stefanie Enzenmüller
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Felix Seyfried
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Salih Demir
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Julia Zinngrebe
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Gunnar Cario
- Pediatric Hematology and Oncology, University Hospital Schleswig Holstein, Campus Kiel, Germany
| | - Martin Schrappe
- Pediatric Hematology and Oncology, University Hospital Schleswig Holstein, Campus Kiel, Germany
| | - Monique L Den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Geertruij Te Kronnie
- Department of Women's and Children's Health, Padua University, Padua, Italy; and
| | - Stefania Bortoluzzi
- Department of Molecular Medicine, Padua University, Padua, Italy
- Interdepartmental Research Center for Innovative Biotechnologies, Padua University, Padua, Italy
| | - Lüder Hinrich Meyer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
13
|
Goričar K, Holcar M, Mavec N, Kovač V, Lenassi M, Dolžan V. Extracellular Vesicle Enriched miR-625-3p Is Associated with Survival of Malignant Mesothelioma Patients. J Pers Med 2021; 11:jpm11101014. [PMID: 34683154 PMCID: PMC8538530 DOI: 10.3390/jpm11101014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022] Open
Abstract
Malignant mesothelioma (MM) is characterized by poor prognosis and short survival. Extracellular vesicles (EVs) are membrane-bound particles released from cells into various body fluids, and their molecular composition reflects the characteristics of the origin cell. Blood EVs or their miRNA cargo might serve as new minimally invasive biomarkers that would enable earlier detection of MM or treatment outcome prediction. Our aim was to evaluate miRNAs enriched in serum EVs as potential prognostic biomarkers in MM patients in a pilot longitudinal study. EVs were isolated from serum samples obtained before and after treatment using ultracentrifugation on 20% sucrose cushion. Serum EV-enriched miR-103-3p, miR-126-3p and miR-625-3p were quantified using qPCR. After treatment, expression of miR-625-3p and miR-126-3p significantly increased in MM patients with poor treatment outcome (p = 0.012 and p = 0.036, respectively). A relative increase in miR-625-3p expression after treatment for more than 3.2% was associated with shorter progression-free survival (7.5 vs. 19.4 months, HR = 3.92, 95% CI = 1.20-12.80, p = 0.024) and overall survival (12.5 vs. 49.1 months, HR = 5.45, 95% CI = 1.06-28.11, p = 0.043) of MM patients. Bioinformatic analysis showed enrichment of 33 miR-625-3p targets in eight biological pathways. Serum EV-enriched miR-625-3p could therefore serve as a prognostic biomarker in MM and could contribute to a more personalized treatment.
Collapse
Affiliation(s)
- Katja Goričar
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (K.G.); (M.H.); (N.M.); (M.L.)
| | - Marija Holcar
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (K.G.); (M.H.); (N.M.); (M.L.)
| | - Nina Mavec
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (K.G.); (M.H.); (N.M.); (M.L.)
| | - Viljem Kovač
- Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Metka Lenassi
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (K.G.); (M.H.); (N.M.); (M.L.)
| | - Vita Dolžan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (K.G.); (M.H.); (N.M.); (M.L.)
- Correspondence: ; Tel.: +386-1-543-76
| |
Collapse
|
14
|
Reza AMMT, Yuan YG. microRNAs Mediated Regulation of the Ribosomal Proteins and its Consequences on the Global Translation of Proteins. Cells 2021; 10:110. [PMID: 33435549 PMCID: PMC7827472 DOI: 10.3390/cells10010110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Ribosomal proteins (RPs) are mostly derived from the energy-consuming enzyme families such as ATP-dependent RNA helicases, AAA-ATPases, GTPases and kinases, and are important structural components of the ribosome, which is a supramolecular ribonucleoprotein complex, composed of Ribosomal RNA (rRNA) and RPs, coordinates the translation and synthesis of proteins with the help of transfer RNA (tRNA) and other factors. Not all RPs are indispensable; in other words, the ribosome could be functional and could continue the translation of proteins instead of lacking in some of the RPs. However, the lack of many RPs could result in severe defects in the biogenesis of ribosomes, which could directly influence the overall translation processes and global expression of the proteins leading to the emergence of different diseases including cancer. While microRNAs (miRNAs) are small non-coding RNAs and one of the potent regulators of the post-transcriptional gene expression, miRNAs regulate gene expression by targeting the 3' untranslated region and/or coding region of the messenger RNAs (mRNAs), and by interacting with the 5' untranslated region, and eventually finetune the expression of approximately one-third of all mammalian genes. Herein, we highlighted the significance of miRNAs mediated regulation of RPs coding mRNAs in the global protein translation.
Collapse
Affiliation(s)
- Abu Musa Md Talimur Reza
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Yu-Guo Yuan
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
15
|
Tanasi I, Adamo A, Kamga PT, Bazzoni R, Krampera M. High-throughput analysis and functional interpretation of extracellular vesicle content in hematological malignancies. Comput Struct Biotechnol J 2020; 18:2670-2677. [PMID: 33101605 PMCID: PMC7554250 DOI: 10.1016/j.csbj.2020.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-coated particles secreted by virtually all cell types in response to different stimuli, both in physiological and pathological conditions. Their content generally reflects their biological functions and includes a variety of molecules, such as nucleic acids, proteins and cellular components. The role of EVs as signaling vehicles has been widely demonstrated. In particular, they are actively involved in the pathogenesis of several hematological malignancies (HM), mainly interacting with a number of target cells and inducing functional and epigenetic changes. In this regard, by releasing their cargo, EVs play a pivotal role in the bilateral cross-talk between tumor microenvironment and cancer cells, thus facilitating mechanisms of immune escape and supporting tumor growth and progression. Recent advances in high-throughput technologies have allowed the deep characterization and functional interpretation of EV content. In this review, the current knowledge on the high-throughput technology-based characterization of EV cargo in HM is summarized.
Collapse
Affiliation(s)
- Ilaria Tanasi
- Department of Medicine, Hematology Section, University of Verona, Italy
| | - Annalisa Adamo
- Department of Medicine, Immunology Section, University of Verona, Italy
| | - Paul Takam Kamga
- Department of Medicine, Hematology Section, University of Verona, Italy
| | - Riccardo Bazzoni
- Department of Medicine, Hematology Section, University of Verona, Italy
| | - Mauro Krampera
- Department of Medicine, Hematology Section, University of Verona, Italy
| |
Collapse
|
16
|
Liang L, Su W, Zhou L, Cao Y, Zhou X, Liu S, Zhao Y, Ding X, Wang Q, Zhang H. Statin downregulation of miR-652-3p protects endothelium from dyslipidemia by promoting ISL1 expression. Metabolism 2020; 107:154226. [PMID: 32277945 DOI: 10.1016/j.metabol.2020.154226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Aberrant endothelial function is a major contributing factor in cardiovascular disease. Dyslipidemia leads to decreased nitric oxide (NO) bioavailability, an early sign of endothelial failure. Low insulin gene enhancer protein (ISL1) levels decrease healthy NO bioavailability. We hypothesized that the microRNA miR-652-3p negatively regulates endothelial ISL1 expression and that dyslipidemia-induced miR-652-3p upregulation induces aberrant endothelial functioning via ISL1 downregulation. METHODS Various in vitro experiments were conducted in human umbilical vein endothelial cells (HUVECs). Luciferase assays were performed in HEK293 cells. We constructed a high-fat diet (HFD) Apoe-/- murine model of dyslipidemia and a rat model of low-density lipoprotein (LDL)-induced dyslipidemia to conduct in vivo and ex vivo experiments. RESULTS Luciferase assays confirmed miR-652-3p's targeting of the ISL1 3'-untranslated region (3'-UTR). Simvastatin blocked oxidized LDL (ox-LDL)-induced increases in miR-652-3p and ox-LDL-induced decreases in ISL1 protein expression, endothelial NO synthase (eNOS) activation, and NO production. Simvastatin's effects were abrogated by miR-652-3p overexpression and phenocopied by miR-652-3p inhibition. The dyslipidemic mouse model exhibited increased miR-652-3p and decreased ISL1 protein levels in the endothelium, effects opposed by simvastatin or miR-652-3p inhibition. The impact of simvastatin in vivo was abolished by overexpressing miR-652-3p or knocking-down ISL1. The rat model of dyslipidemia exhibited a similar pattern of miR-652-3p upregulation, attenuated ISL1 protein levels, decreased eNOS activation, and decreased NO production, effects mitigated by simvastatin. CONCLUSIONS Dyslipidemia upregulates endothelial miR-652-3p, which decreases ISL1 protein levels, eNOS activation, and NO production. Simvastatin therapy lowers endothelial miR-652-3p expression to protect endothelial function under dyslipidemic conditions.
Collapse
Affiliation(s)
- Liwen Liang
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Wenhua Su
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Liang Zhou
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Yu Cao
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Xiuli Zhou
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Shiqi Liu
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Yan Zhao
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Xiaoxue Ding
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Qian Wang
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Hong Zhang
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China.
| |
Collapse
|
17
|
Buhagiar A, Borg J, Ayers D. Overview of current microRNA biomarker signatures as potential diagnostic tools for leukaemic conditions. Noncoding RNA Res 2020; 5:22-26. [PMID: 32110743 PMCID: PMC7033436 DOI: 10.1016/j.ncrna.2020.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023] Open
Abstract
Haematological malignancies encompass all variations of leukaemia at both the chronic and acute level, together with the specific cell type induced into tumourigenesis. Current diagnostic protocols for leukaemic conditions rely heavily on cytomorphology and other histological examinations from bone marrow aspirates, with the latter being a highly invasive surgical procedure for the patient. The discovery of microRNAs as one of the key gene regulatory networks in the past two decades has enabled researchers to investigate the possibility of exploiting the identification of dysregulated expression profiles for specific microRNAs present in the leukaemic patient's bloodstream as novel liquid biopsy diagnostic tools. This review article serves to consolidate recent global research efforts aiming to achieve such scopes.
Collapse
Affiliation(s)
- Alfred Buhagiar
- Faculty of Medicine and Surgery, University of Malta, Msida, MSD 2080, Malta
| | - Joseph Borg
- Faculty of Health Sciences, University of Malta, Msida, MSD 2080, Malta
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, MSD2080, Malta
- Faculty of Biology, Medicine and Health Sciences, The University of Manchester, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
18
|
Aberuyi N, Rahgozar S, Ghodousi ES, Ghaedi K. Drug Resistance Biomarkers and Their Clinical Applications in Childhood Acute Lymphoblastic Leukemia. Front Oncol 2020; 9:1496. [PMID: 32010613 PMCID: PMC6978753 DOI: 10.3389/fonc.2019.01496] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Biomarkers are biological molecules found in body fluids or tissues, which can be considered as indications of a normal or abnormal process, or of a condition or disease. There are various types of biomarkers based on their application and molecular alterations. Treatment-sensitivity or drug resistance biomarkers include prognostic and predictive molecules with utmost importance in selecting appropriate treatment protocols and improving survival rates. Acute lymphoblastic leukemia (ALL) is the most prevalent hematological malignancy diagnosed in children with nearly 80% cure rate. Despite the favorable survival rates of childhood ALL (chALL), resistance to chemotherapeutic agents and, as a consequence, a dismal prognosis develops in a significant number of patients. Therefore, there are urgent needs to have robust, sensitive, and disease-specific molecular prognostic and predictive biomarkers, which could allow better risk classification and then better clinical results. In this article, we review the currently known drug resistance biomarkers, including somatic or germ line nucleic acids, epigenetic alterations, protein expressions and metabolic variations. Moreover, biomarkers with potential clinical applications are discussed.
Collapse
Affiliation(s)
- Narges Aberuyi
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Soheila Rahgozar
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Elaheh Sadat Ghodousi
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Kamran Ghaedi
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| |
Collapse
|
19
|
Rzepiel A, Kutszegi N, Gézsi A, Sági JC, Egyed B, Péter G, Butz H, Nyírő G, Müller J, Kovács GT, Szalai C, Semsei ÁF, Erdélyi DJ. Circulating microRNAs as minimal residual disease biomarkers in childhood acute lymphoblastic leukemia. J Transl Med 2019; 17:372. [PMID: 31727091 PMCID: PMC6854698 DOI: 10.1186/s12967-019-2114-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/26/2019] [Indexed: 12/21/2022] Open
Abstract
Background Treatment stratification based on bone marrow minimal residual disease (MRD) at set time points has resulted in considerably improved survival in pediatric acute lymphoblastic leukemia (ALL). Treatment response is assessed using bone marrow samples. MicroRNAs (miRs) easily traffic among fluid spaces and are more stable than most other RNA classes. We examined the role of circulating miRs as putative less invasive MRD biomarkers. Methods In an exploratory experiment, expression of 46 preselected miRs was studied in platelet-free blood plasma samples of 15 de novo, 5 relapsed ALL patients and 10 controls by Custom TaqMan Array Advanced MicroRNA Card. Based on their high expression in ALL compared to controls, and on the reduction observed along the induction therapy, four miRs were selected for further analyses: miR-128-3p, -181a-5p, -181b-5p and 222-3p. Their expression was measured by qPCR at 4 time points in 27 de novo ALL patients treated in the ALL IC-BFM 2009 study. Results The expression of all 4 miRs significantly decreased over the first week of therapy (miR-128-3p: log2 fold change − 2.86; adjusted p 3.6 × 10−7; miR-181b-5p: log2 fold change − 1.75; adjusted p 1.48 × 10−2; miR-181a-5p: log2 fold change -1.33; adjusted p 3.12 × 10−2; miR-222-3p: log2 fold change − 1.25; adjusted p 1.66 × 10−2). However, no significant further reduction in miR expression was found after the 8th day of therapy. Measured drop in expression of 2 miRs at day 8 strongly correlated with day 15 bone marrow flow cytometry MRD results (miR-128-3p: Pearson’s r = 0.88, adjusted p = 2.71 × 10−4; miR-222-3p: r = 0.81, adjusted p = 2.99 × 10−3). Conclusion In conclusion, these circulating miRs might act as biomarkers of residual leukemia. MiR-128-3p and miR-222-3p in blood predict day 15 flow cytometry MRD results 7 days earlier. Although, their sensitivity falls behind that of bone marrow flow cytometry MRD at day 15.
Collapse
Affiliation(s)
- Andrea Rzepiel
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Nóra Kutszegi
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary.,Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - András Gézsi
- MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary.,Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Judit C Sági
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Bálint Egyed
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary.,Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | - Henriett Butz
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Nyírő
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Judit Müller
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Gábor T Kovács
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Csaba Szalai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.,Heim Pál Children's Hospital, Budapest, Hungary
| | - Ágnes F Semsei
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Dániel J Erdélyi
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
20
|
Zhen C, Huang J, Lu J. MicroRNA-652 inhibits the biological characteristics of esophageal squamous cell carcinoma by directly targeting fibroblast growth factor receptor 1. Exp Ther Med 2019; 18:4473-4480. [PMID: 31777550 DOI: 10.3892/etm.2019.8072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 08/28/2019] [Indexed: 12/14/2022] Open
Abstract
Numerous studies have demonstrated that microRNAs (miRNAs) are dysregulated in esophageal squamous cell carcinoma (ESCC). Changes in miRNA expression may be associated with ESCC formation and progression. Therefore, the identification of ESCC-associated miRNAs may facilitate the development of effective therapeutic approaches for patients with ESCC. Recently, miRNA-652 (miR-652) was recognized as a cancer-associated miRNA in a number of different types of cancer. However, the expression status and roles of miR-652 in ESCC as well as the molecular mechanisms modulated or altered by it remain largely unknown. In the present study, it was demonstrated that miR-652 was downregulated in ESCC tissues and cell lines. Functional assays showed that upregulation of miR-652 expression decreased proliferation and invasion of ESCC cells. Mechanistically, fibroblast growth factor receptor 1 (FGFR1) was determined to be a direct target of miR-652 in ESCC cells. Additionally, FGFR1 was upregulated in ESCC tissues, and the expression of FGFR1 was inversely correlated with miR-652 expression. Furthermore, restoring FGFR1 expression abolished the suppressive effects of miR-652 overexpression on the proliferation and invasion of ESCC cells. These findings demonstrated that miR-652 inhibits the proliferation and invasion of ESCC cells by directly targeting FGFR1.
Collapse
Affiliation(s)
- Cheng Zhen
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Jingshan Huang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Jibin Lu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
21
|
Zhang Y, Li X, Bai L, Li L, Li D, Ding X, Wang B, Li C. MicroRNA-31 is a potential biomarker for screening B-lymphoblastic leukemia in children. Oncol Lett 2019; 18:4930-4935. [PMID: 31612004 DOI: 10.3892/ol.2019.10843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/11/2019] [Indexed: 01/01/2023] Open
Abstract
The present study aimed to investigate the expression and significance of microRNA-31 (miR-31) in children with acute B-lymphoblastic leukemia (B-ALL). Bone marrow specimens and peripheral blood were collected from children with B-ALL (n=38) and healthy controls (n=18). Total RNA was extracted and the expression levels of miR-31 were measured using quantitative PCR. In addition, a receiver operating characteristic curve was generated, and the area under the curve (AUC) was calculated to evaluate the diagnostic value of miR-31 for the development of B-ALL. miR-31 expression was significantly lower in the B-ALL group compared with in the control group (P<0.05). Additionally, the expression levels of miR-31 in the B-ALL group before treatment were markedly lower than in the B-ALL group after treatment, and miR-31 expression was significantly lower after 30 days of treatment compared with after 12 weeks of treatment. Furthermore, miR-31 expression in the group of children ≥10 years of age was higher than that in the group of children <10 years of age. Furthermore, the expression levels of miR-31 were higher in the low-risk group compared with in the medium- and high-risk groups (P<0.05). When the cutoff value was set at 1.8, the AUC of miR-31 for B-ALL diagnosis was 0.915 (95% CI, 0.828-1.000; P<0.0001), with a sensitivity and specificity of 80.8 and 100%, respectively. In conclusion, miR-31 may exert an anticancer role in B-ALL in children and may be a potential marker to assist in diagnosis and prognostic prediction.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Hematology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xin Li
- Department of Pediatric Medicine, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Liping Bai
- Department of Hematology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Li Li
- Department of Hematology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Danhong Li
- Department of Hematology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xue Ding
- Department of Hematology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Bo Wang
- Department of Hematology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Chengwei Li
- Department of Clinical Laboratory, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
22
|
Gong X, Xu B, Zi L, Chen X. miR-625 reverses multidrug resistance in gastric cancer cells by directly targeting ALDH1A1. Cancer Manag Res 2019; 11:6615-6624. [PMID: 31410057 PMCID: PMC6643062 DOI: 10.2147/cmar.s208708] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022] Open
Abstract
Background: microRNAs (miRNAs) are emerging as critical regulators of multidrug resistance (MDR) in gastric cancer, a major cause of chemotherapy failure. miR-625 is downregulated in gastric cancer and negatively associated with metastasis. In the current study, we aimed to investigate whether miR-625 regulates MDR in gastric cancer. Methods: The level of miR-625 in gastric cancer cells with or without MDR was quantified by quantitative reverse transcription PCR (qRT-PCR) analysis. The sensitivity of gastric cancer cells to chemotherapeutic agents was assessed by MTT assay. The protein expression was determined by Western blot analysis, and the luciferase reporter assay was applied to confirm miR-625 regulation of the potential target. Results: miR-625 is downregulated in MDR gastric cancer cells compared with chemosensitive counterparts. In addition, miR-625 increases the sensitivity and promotes apoptosis of gastric cancer cells when treated with different chemotherapeutic agents. Moreover, miR-625 directly targets the aldehyde dehydrogenase 1A1 (ALDH1A1), and importantly, the restoration of ALDH1A1 expression rescues miR-625 effects on MDR in gastric cancer cells. Conclusion: miR-625 reverses MDR in gastric cancer cells by targeting ALDH1A1. Hence, our study identifies miR-625 as a novel regulator of MDR in gastric cancer cells, and implicates its potential application for overcoming MDR in gastric cancer chemotherapy.
Collapse
Affiliation(s)
- Xufei Gong
- Department of General Surgery, Linyi People's Hospital, Linyi, Shandong 276002, People's Republic of China
| | - Baoli Xu
- Department of General Surgery, Linyi People's Hospital, Linyi, Shandong 276002, People's Republic of China
| | - Li Zi
- Department of General Surgery, Linyi People's Hospital, Linyi, Shandong 276002, People's Republic of China
| | - Xinrui Chen
- Department of General Surgery, Linyi People's Hospital, Linyi, Shandong 276002, People's Republic of China
| |
Collapse
|
23
|
Yang H, Song Z, Wu X, Wu Y, Liu C. MicroRNA-652 suppresses malignant phenotypes in glioblastoma multiforme via FOXK1-mediated AKT/mTOR signaling pathway. Onco Targets Ther 2019; 12:5563-5575. [PMID: 31371994 PMCID: PMC6630095 DOI: 10.2147/ott.s204715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose An increasing number of studies have documented that dysregulation of microRNAs (miRNAs) is common in glioblastoma multiforme (GBM). miR-652 is aberrantly expressed in various human cancers and plays important roles in numerous cancer-related processes. However, the expression profiles and potential roles of miR-652 in GBM remain largely unknown. Patients and methods Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to determine miR-652 expression in GBM tissues and cell lines. The effects of miR-652 upregulation on GBM cell proliferation, clone formation, apoptosis, migration and invasion were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, clone formation, flow cytometry and Transwell® migration and invasion assays, respectively. In vivo xenotransplantation was utilized to determine the effect of miR-652 on GBM tumor growth in vivo. Of note, the molecular mechanisms underlying the tumor-suppressing activity of miR-652 upregulation in GBM cells were also investigated using a series of experiments, including bioinformatics analysis, luciferase reporter assay, RT-qPCR and Western blot analysis. Results miR-652 expression was considerably downregulated in GBM tissues and cell lines. Low miR-652 expression was strongly correlated with Karnofsky performance score and tumor size. Overall survival duration was shorter in GBM patients with low miR-652 expression than in those with high miR-652 expression. miR-652 resumption considerably suppressed the proliferation, clone formation, migration, and invasion and promoted the apoptosis of GBM cells in vitro. In addition, forkhead-box k1 (FOXK1) was demonstrated as the direct target gene of miR-652 in GBM cells. FOXK1 downregulation led to a tumor-suppressing activity similar to that of miR-652 upregulation. Restoration of FOXK1 expression partially neutralized the influence of miR-652 overexpression on GBM cells. Furthermore, ectopic miR-652 expression deactivated the AKT/mTOR pathway in GBM cells via FOXK1 regulation. Moreover, miR-652 impaired GBM tumor growth in vivo, probably caused by miR-652-mediated suppression of FOXK1/AKT/mTOR signaling. Conclusion miR-652 inhibits FOXK1 and deactivates the AKT/mTOR pathway, thereby resulting in the suppression of malignant phenotypes of GBM cells in vitro and in vivo.
Collapse
Affiliation(s)
- Huimei Yang
- Department of Laboratory, The Third People's Hospital of Linyi, Linyi, Shandong 276023, People's Republic of China
| | - Zhenzhen Song
- Department of Laboratory, The Third People's Hospital of Linyi, Linyi, Shandong 276023, People's Republic of China
| | - Xia Wu
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, People's Republic of China
| | - Yilei Wu
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, People's Republic of China
| | - Chengxia Liu
- Department of Pathology, Linyi Cancer Hospital, Linyi, Shandong 276023, People's Republic of China
| |
Collapse
|
24
|
Liang X, Xin X, Qi D, Fu C, Ding M. Silencing the PIK3CA Gene Enhances the Sensitivity of Childhood Leukemia Cells to Chemotherapy Drugs by Suppressing the Phosphorylation of Akt. Yonsei Med J 2019; 60:182-190. [PMID: 30666840 PMCID: PMC6342719 DOI: 10.3349/ymj.2019.60.2.182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
PURPOSE This study aimed to investigate the effects of PIK3CA on the sensitivity of acute B lymphocytic leukemia cells (Nalm-6 cells) to chemotherapy drugs. MATERIALS AND METHODS Children's normal B lymphocytes and Nalm-6 cells were cultured. Nalm-6 cells were transfected with PIK3CA siRNA (siPIK3CA group) or its negative control (PIK3CA-Control group). Normal Nalm-6 cells were named Mock group. Nalm-6 cells transfected by PIK3CA siRNA were treated with Akt inhibitor (siPIK3CA+Akti-1/2 group). mRNA and protein expression was detected by qRT-PCR and Western blot. Proliferation and sensitivity to chemotherapeutic drugs was detected by MTT assay. Cell cycle and apoptosis was explored by low cytometry. Transwell assay was performed to test invasion. RESULTS PIK3CA mRNA (p=0.008) and protein (p=0.006) expression was higher in Nalm-6 cells than that in normal B lymphocytes. Compared with the Mock group and PIK3CA-Control group, Nalm-6 cells of the siPIK3CA group had lower OD495 values (all p<0.05) and invasion cell numbers (p=0.03 and p=0.025), as well as a higher proportion of G0/G1 phase cells (p=0.020 and p=0.022), percentage of apoptosis (p=0.016 and p=0.022), and inhibition rate (all p<0.05). pAkt expression in the siPIK3CA group (p=0.026 and p=0.031) and siPIK3CA+Akti-1/2 group (p=0.019 and p=0.023) was lower than that in the Mock group. CONCLUSION PIK3CA silencing inhibited Nalm-6 cell proliferation and invasion, and promoted their apoptosis and sensitivity to chemotherapeutic drugs, potentially through regulation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xiuling Liang
- Department of Pediatric Internal Medicine, Affiliated Hospital of Taishan Medical University, Tai'an, China
| | - Xianfang Xin
- Department of Pediatric Internal Medicine, Affiliated Hospital of Taishan Medical University, Tai'an, China
| | - Dongmei Qi
- Department of Pediatric Internal Medicine, Affiliated Hospital of Taishan Medical University, Tai'an, China
| | - Chengyan Fu
- Department of Pediatric Internal Medicine, Affiliated Hospital of Taishan Medical University, Tai'an, China
| | - Mingde Ding
- Department of Gynecology, Affiliated Hospital of Taishan Medical University, Tai'an, China.
| |
Collapse
|
25
|
Zhao L, Liu K, Pan X, Quan J, Zhou L, Li Z, Lin C, Xu J, Xu W, Guan X, Li H, Ni L, Gui Y, Lai Y. miR-625-3p promotes migration and invasion and reduces apoptosis of clear cell renal cell carcinoma. Am J Transl Res 2019; 11:6475-6486. [PMID: 31737199 PMCID: PMC6834509 DOI: pmid/31737199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/10/2019] [Indexed: 02/05/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common malignancy, yet, the mechanisms underlying tumorigenesis remain unclear. Several miRNAs have been implicated in the development of RCC previously via regulation of target gene expression. As miR-625-3p has recently been identified to play a role in development of other malignancies and is reportedly upregulated in ccRCC, we sought to investigate the role of this miRNA in the progression of ccRCC. Analysis of 30 paired fresh ccRCC tissues and adjacent normal renal tissues revealed that the expression of miR-625-3p was increased in ccRCC tissues compared to normal tissues. Subsequently, in 136 formalin-fixed paraffin-embedded ccRCC tissues, the increased miR-625-3p expression was correlated with poor prognosis for ccRCC patients. The diagnostic value of miR-625-3p was identified in 50 ccRCC patients and 74 healthy controls by ROC curve. miR-625-3p was decreased in serum of ccRCC patients compared to healthy individuals. miR-625-3p could serve as a promising serum biomarker for yielding an area under the receiver operating characteristic curve of 0.792 with 70.3% sensitivity and 80.0% specificity in discriminating ccRCC from healthy individuals. Using in vitro functional assays, we found that overexpression of miR-625-3p promoted migration and invasion of ccRCC cells but reduced ccRCC cell apoptosis. Inhibition of miR-625-3p, on the other hand, exerted the opposite effects. Bioinformatic analyses indicated that predicted gene targets of miR-625-3p are correlated with lower overall survival of ccRCC patients. Together, these findings demonstrate that miR-625-3p promotes ccRCC migration and invasion and reduces apoptosis, providing a prognostic marker for survival and a potential diagnostic and therapeutic target against ccRCC.
Collapse
Affiliation(s)
- Liwen Zhao
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| | - Kaihao Liu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| | - Xiang Pan
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| | - Jing Quan
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| | - Liang Zhou
- Guangzhou Medical UniversityGuangzhou 511436, Guangdong, P. R. China
| | - Zuwei Li
- Shantou University Medical CollegeShantou 515041, Guangdong, P. R. China
| | - Canbin Lin
- Shantou University Medical CollegeShantou 515041, Guangdong, P. R. China
| | - Jinling Xu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| | - Weijie Xu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| | - Xin Guan
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| | - Hang Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| | - Liangchao Ni
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical UniversityShenzhen 518036, Guangdong, P. R. China
| |
Collapse
|
26
|
Carvalho de Oliveira J, Molinari Roberto G, Baroni M, Bezerra Salomão K, Alejandra Pezuk J, Sol Brassesco M. MiRNA Dysregulation in Childhood Hematological Cancer. Int J Mol Sci 2018; 19:ijms19092688. [PMID: 30201877 PMCID: PMC6165337 DOI: 10.3390/ijms19092688] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 12/14/2022] Open
Abstract
For decades, cancer biology focused largely on the protein-encoding genes that have clear roles in tumor development or progression: cell-cycle control, apoptotic evasion, genome instability, drug resistance, or signaling pathways that stimulate growth, angiogenesis, or metastasis. MicroRNAs (miRNAs), however, represent one of the more abundant classes of cell modulators in multicellular organisms and largely contribute to regulating gene expression. Many of the ~2500 miRNAs discovered to date in humans regulate vital biological processes, and their aberrant expression results in pathological and malignant outcomes. In this review, we highlight what has been learned about the roles of miRNAs in some of the most common human pediatric leukemias and lymphomas, along with their value as diagnostic/prognostic factors.
Collapse
Affiliation(s)
| | - Gabriela Molinari Roberto
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Mirella Baroni
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Karina Bezerra Salomão
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Julia Alejandra Pezuk
- Programa de Pós-graduação em Farmácia, Anhanguera University of São Paulo, UNIAN/SP, 05145-200 São Paulo, Brazil.
| | - María Sol Brassesco
- Departamento de Biologia, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, Brazil.
| |
Collapse
|