1
|
Ribeiro HF, de Castro Sant' Anna C, de Jesus Oliveira Kato V, de Sousa Brasil RM, Bona AB, da Costa DF, Lima IK, Soares PC, Guimarães APA, de Assumpção PP, Burbano RR. CDC25B Inhibition by menadione: a potential new therapeutical approach. Anticancer Agents Med Chem 2022; 22:2927-2932. [PMID: 35440317 DOI: 10.2174/1871520622666220418131935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/28/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is the fifth most common type of tumor and the third leading cause of cancer death worldwide. The evolution of gastric carcinogenesis is still poorly understood and, for this reason, preclinical research protocols were established that included the development of gastric cancer cell lines and the establishment of models of gastric carcinogenesis in non-human primate Sapajus apella. A comprehensive literature search was performed in relevant databases such as PubMed, ResearchGate and Google Scholar to identify studies related to the topic. After an in-depth study of these reports, significant data/data were collected and compiled under appropriate headings. The main result of the studies carried out by the group on GC is the demonstration of the MYC gene overexpression as a common phenomenon in stomach carcinogenesis. Furthermore, we revealed that reducing the expression of the CDC25B gene, regulated by the MYC protein, is a therapeutic strategy against stomach tumors. This review article reveals preclinical evidence that treatment with menadione in experimental models of gastric tumorigenesis, in vivo and in vitro, inhibits the action of the phosphatase CDC25B and, consequently, prevents cell proliferation, invasion and migration.
Collapse
|
2
|
da Silva EL, Mesquita FP, de Sousa Portilho AJ, Bezerra ECA, Daniel JP, Aranha ESP, Farran S, de Vasconcellos MC, de Moraes MEA, Moreira-Nunes CA, Montenegro RC. Differences in glucose concentration shows new perspectives in gastric cancer metabolism. Toxicol In Vitro 2022; 82:105357. [PMID: 35427737 DOI: 10.1016/j.tiv.2022.105357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 12/06/2022]
Abstract
Gastric cancer (GC) is among the deadliest cancers worldwide despite available therapies, highlighting the need for novel therapies and pharmacological agents. Metabolic deregulation is a potential study area for new anticancer targets, but the in vitro metabolic studies are controversial, as different ranges of glucose used in the culture medium can influence results. In this study, we evaluated cellular viability, glucose uptake, and LDH activity in gastric cell lines when exposed to different glucose concentrations: high (HG, 25 mM), low (LG, 5.5 mM), and free (FG, 0 mM) glucose mediums. Moreover, we evaluated how glucose variations may influence cellular phenotype and the expression of genes related to epithelial-mesenchymal transition (EMT), metabolism, and cancer development in metastatic GC cells (AGP-01). Results showed that in the FG metastatic cells evidenced higher viability when compared with other cell lines and that when exposed to either LG or HG mediums most of the phenotypic assays did not differ. However, cells exposed to LG increased colony formation and mRNA levels of metabolic-related genes when compared to HG medium. Our results recommend LG medium to metabolic studies once glucose concentration is closer to physiological levels. These findings are important to point out new relevant targets in metabolic reprogramming that can be alternatives to current chemotherapies in patients with metastatic GC.
Collapse
Affiliation(s)
- Emerson Lucena da Silva
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Felipe Pantoja Mesquita
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Adrhyann Jullyanne de Sousa Portilho
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Emanuel Cintra Austregésilo Bezerra
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Julio Paulino Daniel
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Elenn Suzany Pereira Aranha
- Biological Activity Laboratory, Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 1200 - Coroado, Manaus, Brazil
| | - Sarah Farran
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center - Riad El-Solh, Beirut, Lebanon
| | - Marne Carvalho de Vasconcellos
- Biological Activity Laboratory, Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 1200 - Coroado, Manaus, Brazil
| | - Maria Elisabete Amaral de Moraes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Caroline Aquino Moreira-Nunes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Raquel Carvalho Montenegro
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil.
| |
Collapse
|
3
|
Huang W, Yau Y, Zhu J, Wang Y, Dai Z, Gan H, Qian L, Yang Z. Effect of Electroacupuncture at Zusanli (ST36) on Intestinal Microbiota in Rats With Chronic Atrophic Gastritis. Front Genet 2022; 13:824739. [PMID: 35281809 PMCID: PMC8906781 DOI: 10.3389/fgene.2022.824739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Electroacupuncture is a common treatment for chronic atrophic gastritis (CAG) in China. We aimed to determine the effects of electroacupuncture at zusanli (ST36) on intestinal microbiota in CAG rats. Methods: In total, 42 SD rats were randomly divided into normal (NC, 10 rats) and model (MG, 32 rats) groups. Rats in the MG group were established as CAG disease models. After that, the rats in the MG group were randomly divided into CAG (10 rats), electroacupuncture (EA, 10 rats), and Vitacoenzyme (Vit, 10 rats) groups. Rats in the NC and CAG groups were subjected to a 30-min/d confinement for 4 weeks. Rats in the EA group were given electroacupuncture at zusanli for 30 min/d for 4 weeks. Rats in the Vit group were given Vitacoenzyme solution 10 ml/(kg d) for 4 weeks. Histopathological changes in the gastric mucosa were observed with hematoxylin and eosin staining, and the gene expression level of p53, Bcl-2, and c-myc was determined using the qPCR method. The 16S rDNA sequencing technique was used to determine structural changes and relative abundance expression of intestinal flora. Results: Compared with the NC group, gastric mucosal pathology in the CAG group revealed significant inflammatory infiltration, and the gastric mucosal lesions in the electroacupuncture group were improved remarkably; the expression of p53 and c-myc genes in the CAG group increased (p < 0.05), while the expression of Bcl-2 genes decreased (p < 0.05) in the EA group, that of p53 and c-myc genes decreased (p < 0.05), and that of Bcl-2 genes increased (p < 0.05). The abundance of bacteria such as Lactobacillus, Desulfobacterota, and Bacteroides pectinophilus group in the CAG group increased (p < 0.05), while that of bacteria such as Gastranaerophilales, Romboutsia, and Blautia decreased (p < 0.05). The relative abundance of Desulfobacterota and Helicobacter in the EA group decreased (p < 0.05), while that of probiotic bacteria such as Oscillospirales, Romboutsia, and Christensenellaceae increased (p < 0.05). Conclusion: Electroacupuncture at zusanli can promote the repair of pathological damage to the gastric mucosa in rats with CAG, and the mechanism might relate to the reduction in the relative abundance of harmful bacteria, increase in the relative abundance of intestinal probiotics, and regulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Wanyi Huang
- School of Medicine, Xiamen University, Xiamen, China.,College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuenming Yau
- School of Medicine, Xiamen University, Xiamen, China
| | - Jingru Zhu
- College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yingjie Wang
- College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhipeng Dai
- Physical Education College, Hunan City University, Yiyang, China
| | - Huijuan Gan
- College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Linchao Qian
- School of Medicine, Xiamen University, Xiamen, China
| | - Zongbao Yang
- School of Medicine, Xiamen University, Xiamen, China.,College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
4
|
Antiproliferative, genotoxic activities and quantification of extracts and cucurbitacin B obtained from Luffa operculata (L.) Cogn. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103589] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
5
|
Overview of Gene Expression Analysis in Gastric Disease Infected with Helicobacter pylori: CLDN1 and MMP9 Could Be Biomarkers for Early Diagnosis of Gastric Cancer. Processes (Basel) 2022. [DOI: 10.3390/pr10020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chronic Helicobacter pylori infection produces several lesions in the human stomach, which can progress to chronic atrophic gastritis and gastric cancer. To date, there is very little information on gene expression in chronic atrophic gastritis and its relationship with progression to gastric cancer. In this study, we performed a gene expression analysis during chronic atrophic gastritis in order to identify possible biomarkers that allow an early diagnosis of gastric cancer. We studied biopsies from patients with chronic atrophic gastritis and gastric cancer. The biopsies were analyzed by a gene expression microarray and corroborated by qPCR and validated through immunohistochemistry. Our results revealed that gene expression profiles in patients with chronic atrophic gastritis showed molecular changes of the gastric mucosa, leading to gastric cancer. The gene expression profiles of CLDN1, CLDN7, OLFM4, C-MYC and MMP9 were more notable from the chronic atrophic gastritis. The gene expression patterns observed in this study allowed the identification of CLDN1 and MMP9 proteins as promising biomarkers of early stages of gastric cancer development.
Collapse
|
6
|
Gilani N, Arabi Belaghi R, Aftabi Y, Faramarzi E, Edgünlü T, Somi MH. Identifying Potential miRNA Biomarkers for Gastric Cancer Diagnosis Using Machine Learning Variable Selection Approach. Front Genet 2022; 12:779455. [PMID: 35082831 PMCID: PMC8785967 DOI: 10.3389/fgene.2021.779455] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/22/2021] [Indexed: 01/21/2023] Open
Abstract
Aim: This study aimed to accurately identification of potential miRNAs for gastric cancer (GC) diagnosis at the early stages of the disease. Methods: We used GSE106817 data with 2,566 miRNAs to train the machine learning models. We used the Boruta machine learning variable selection approach to identify the strong miRNAs associated with GC in the training sample. We then validated the prediction models in the independent sample GSE113486 data. Finally, an ontological analysis was done on identified miRNAs to eliciting the relevant relationships. Results: Of those 2,874 patients in the training the model, there were 115 (4%) patients with GC. Boruta identified 30 miRNAs as potential biomarkers for GC diagnosis and hsa-miR-1343-3p was at the highest ranking. All of the machine learning algorithms showed that using hsa-miR-1343-3p as a biomarker, GC can be predicted with very high precision (AUC; 100%, sensitivity; 100%, specificity; 100% ROC; 100%, Kappa; 100) using with the cut-off point of 8.2 for hsa-miR-1343-3p. Also, ontological analysis of 30 identified miRNAs approved their strong relationship with cancer associated genes and molecular events. Conclusion: The hsa-miR-1343-3p could be introduced as a valuable target for studies on the GC diagnosis using reliable biomarkers.
Collapse
Affiliation(s)
- Neda Gilani
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Arabi Belaghi
- Department of Mathematics, Uppsala University, Uppsala, Sweden
- Department of Statistics, Faculty of Mathematical Science, University of Tabriz, Tabriz, Iran
| | - Younes Aftabi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Faramarzi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tuba Edgünlü
- Department of Medical Biology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Chen Y, Luo TQ, Xu SS, Chen CY, Sun Y, Lin L, Mao YP. An immune-related seven-lncRNA signature for head and neck squamous cell carcinoma. Cancer Med 2021; 10:2268-2285. [PMID: 33660378 PMCID: PMC7982618 DOI: 10.1002/cam4.3756] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
In this study, we developed a long noncoding RNA (lncRNA)‐based prognostic signature for stratification of patients with head a nd neck squamous cell carcinoma (HNSCC). In total, 493 HNSCC samples obtained from the Cancer Genome Atlas database were divided into training and testing cohorts (3:2 ratio). We identified 3913 immune‐related lncRNAs in the HNSCC training cohort by Pearson correlation analysis; only seven were independently associated with overall survival and were used to develop an immune‐related lncRNA prognostic signature (IRLPS) grouping of HNSCC patients into high‐ and low‐IRLPS subgroups. Univariate and multivariate Cox analyses revealed that low‐IRLPS patients had a better prognosis in all the cohorts, which was retained after stratification by sex, grade, and HPV status. Although the TNM stage was also an independent prognostic factor, the IRLPS had a better discriminability with higher AUC at the 3‐ and 5‐year follow‐ups in all cohorts. Low‐IRLPS samples had more immune cell infiltration and were enriched in immune‐related pathways, while high‐ IRLPS samples were enriched in metabolic pathways. A nomogram constructed including age, TNM stage, and IRLPS showed good calibration. Thus, IRLPS improves the prognostic prediction and also distinguishes different tumor microenvironment (TME) in HNSCC patients.
Collapse
Affiliation(s)
- Yue Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China
| | - Tian-Qi Luo
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, People's Republic of China
| | - Si-Si Xu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China
| | - Chun-Yan Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China
| | - Li Lin
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China
| | - Yan-Ping Mao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
8
|
Heitor da Silva Maués J, Ferreira Ribeiro H, de Maria Maués Sacramento R, Maia de Sousa R, Pereira de Tommaso R, Dourado Kovacs Machado Costa B, Cardoso Soares P, Pimentel Assumpção P, de Fátima Aquino Moreira-Nunes C, Mário Rodriguez Burbano R. Downregulated genes by silencing MYC pathway identified with RNA-SEQ analysis as potential prognostic biomarkers in gastric adenocarcinoma. Aging (Albany NY) 2020; 12:24651-24670. [PMID: 33351778 PMCID: PMC7803532 DOI: 10.18632/aging.202260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/31/2020] [Indexed: 12/24/2022]
Abstract
MYC overexpression is a common phenomenon in gastric carcinogenesis. In this study, we identified genes differentially expressed with a downregulated profile in gastric cancer (GC) cell lines with silenced MYC. The TTLL12, CDKN3, CDC16, PTPRA, MZT2B, UBE2T genes were validated using qRT-PCR, western blot and immunohistochemistry in tissues of 213 patients with diffuse and intestinal GC. We identified high levels of TTLL12, MZT2B, CDC16, UBE2T, associated with early and advanced stages, lymph nodes, distant metastases and risk factors such as H. pylori. Our results show that in the diffuse GC the overexpression of CDC16 and UBE2T indicate markers of poor prognosis higher than TTLL12. That is, patients with overexpression of these two genes live less than patients with overexpression of TTLL12. In the intestinal GC, patients who overexpressed CDC16 had a significantly lower survival rate than patients who overexpressed MZT2B and UBE2T, indicating in our data a worse prognostic value of CDC16 compared to the other two genes. PTPRA and CDKN3 proved to be important for assessing tumor progression in the early and advanced stages. In summary, in this study, we identified diagnostic and prognostic biomarkers of GC under the control of MYC, related to the cell cycle and the neoplastic process.
Collapse
Affiliation(s)
- Jersey Heitor da Silva Maués
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, Belém 66063-240, PA, Brazil
| | - Helem Ferreira Ribeiro
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Center of Biological and Health Sciences, Department of Biomedicine, University of Amazon, Belém 66060-000, PA, Brazil
| | | | - Rafael Maia de Sousa
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, Belém 66063-240, PA, Brazil
| | | | | | - Paulo Cardoso Soares
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, Belém 66063-240, PA, Brazil
| | - Paulo Pimentel Assumpção
- Oncology Research Nucleus, University Hospital João de Barros Barreto, Federal University of Pará, Belém 66073-000, PA, Brazil
| | | | - Rommel Mário Rodriguez Burbano
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, Belém 66063-240, PA, Brazil
| |
Collapse
|
9
|
Bona AB, Calcagno DQ, Ribeiro HF, Muniz JAPC, Pinto GR, Rocha CAM, Lacreta Junior ACC, de Assumpção PP, Herranz JAR, Burbano RR. Menadione reduces CDC25B expression and promotes tumor shrinkage in gastric cancer. Therap Adv Gastroenterol 2020; 13:1756284819895435. [PMID: 35392297 PMCID: PMC8981514 DOI: 10.1177/1756284819895435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/26/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Gastric cancer is one of the most incident types of cancer worldwide and presents high mortality rates and poor prognosis. MYC oncogene overexpression is a key event in gastric carcinogenesis and it is known that its protein positively regulates CDC25B expression which, in turn, plays an essential role in the cell division cycle progression. Menadione is a synthetic form of vitamin K that acts as a specific inhibitor of the CDC25 family of phosphatases. METHODS To better understand the menadione mechanism of action in gastric cancer, we evaluated its molecular and cellular effects in cell lines and in Sapajus apella, nonhuman primates from the new world which had gastric carcinogenesis induced by N-Methyl-N-nitrosourea. We tested CDC25B expression by western blot and RT-qPCR. In-vitro assays include proliferation, migration, invasion and flow cytometry to analyze cell cycle arrest. In in-vivo experiments, in addition to the expression analyses, we followed the preneoplastic lesions and the tumor progression by ultrasonography, endoscopy, biopsies, histopathology and immunohistochemistry. RESULTS Our tests demonstrated menadione reducing CDC25B expression in vivo and in vitro. It was able to reduce migration, invasion and proliferation rates, and induce cell cycle arrest in gastric cancer cell lines. Moreover, our in-vivo experiments demonstrated menadione inhibiting tumor development and progression. CONCLUSIONS We suggest this compound may be an important ally of chemotherapeutics in the treatment of gastric cancer. In addition, CDC25B has proven to be an effective target for investigation and development of new therapeutic strategies for this malignancy.
Collapse
Affiliation(s)
| | - Danielle Queiroz Calcagno
- Oncology Research Nucleus, University Hospital
João de Barros Barreto, Federal University of Pará, Belém, Brazil
| | - Helem Ferreira Ribeiro
- Center of Biological and Health Sciences,
Department of Biomedicine, University of Amazon, Belém, Brazil
| | | | | | | | | | - Paulo Pimentel de Assumpção
- Oncology Research Nucleus, University Hospital
João de Barros Barreto, Federal University of Pará, Belém, Brazil
| | | | | |
Collapse
|
10
|
New prognostic markers revealed by RNA-Seq transcriptome analysis after MYC silencing in a metastatic gastric cancer cell line. Oncotarget 2019; 10:5768-5779. [PMID: 31645899 PMCID: PMC6791377 DOI: 10.18632/oncotarget.27208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
MYC overexpression is considered a driver event in gastric cancer (GC), and is frequently correlated with poor prognosis and metastasis. In this study, we evaluated the prognostic value of genes upregulated by MYC in patients with GC. Metastatic GC cells (AGP01) characterized by MYC amplification, were transfected with siRNAs targeting MYC. RNA-seq was performed in silenced and non-silenced AGP01 cells. Among the differentially expressed genes, CIAPIN1, MTA2, and UXT were validated using qRT-PCR, western blot, and immunohistochemistry in gastric tissues of 213 patients with GC; and their expressions were correlated with clinicopathological and survival data. High mRNA and protein levels of CIAPIN1, MTA2, and UXT were strongly associated with advanced GC stages (P < 0.0001). However, only CIAPIN1 and UXT gene expressions were able to predict distant metastases in patients with early-stage GC (P < 0.0001), with high sensitivity (> 92%) and specificity (> 90%). Overall survival rate of patients with overexpressed CIAPIN1 or UXT was significantly lower (P < 0.0001). In conclusion, CIAPIN1 and UXT may serve as potential molecular markers for GC prognosis.
Collapse
|