1
|
Hanna M, Elnassag SS, Mohamed DH, Elbaset MA, Shaker O, Khowailed EA, Gouda SAA. Melatonin and mesenchymal stem cells co-administration alleviates chronic obstructive pulmonary disease via modulation of angiogenesis at the vascular-alveolar unit. Pflugers Arch 2024; 476:1155-1168. [PMID: 38740599 PMCID: PMC11166745 DOI: 10.1007/s00424-024-02968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is considered a severe disease mitigating lung physiological functions with high mortality outcomes, insufficient therapy, and pathophysiology pathways which is still not fully understood. Mesenchymal stem cells (MSCs) derived from bone marrow play an important role in improving the function of organs suffering inflammation, oxidative stress, and immune reaction. It might also play a role in regenerative medicine, but that is still questionable. Additionally, Melatonin with its known antioxidative and anti-inflammatory impact is attracting attention nowadays as a useful treatment. We hypothesized that Melatonin may augment the effect of MSCs at the level of angiogenesis in COPD. In our study, the COPD model was established using cigarette smoking and lipopolysaccharide. The COPD rats were divided into four groups: COPD group, Melatonin-treated group, MSC-treated group, and combined treated group (Melatonin-MSCs). We found that COPD was accompanied by deterioration of pulmonary function tests in response to expiratory parameter affection more than inspiratory ones. This was associated with increased Hypoxia inducible factor-1α expression and vascular endothelial growth factor level. Consequently, there was increased CD31 expression indicating increased angiogenesis with massive enlargement of airspaces and thinning of alveolar septa with decreased mean radial alveolar count, in addition to, inflammatory cell infiltration and disruption of the bronchiolar epithelial wall with loss of cilia and blood vessel wall thickening. These findings were improved significantly when Melatonin and bone marrow-derived MSCs were used as a combined treatment proving the hypothesized target that Melatonin might augment MSCs aiming at vascular changes.
Collapse
Affiliation(s)
- Mira Hanna
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt.
| | - Sabreen Sayed Elnassag
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt
| | - Dina Hisham Mohamed
- Department of Histology, Faculty of Medicine, Cairo University, El-Maniel 11451, Cairo, Egypt
| | - Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Olfat Shaker
- Department of Biochemistry, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt
| | - Effat A Khowailed
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt
| | - Sarah Ali Abdelhameed Gouda
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt
| |
Collapse
|
2
|
Rao T, Zhou Y, Chen C, Chen J, Zhang J, Lin W, Jia D. Recent progress in neonatal hyperoxic lung injury. Pediatr Pulmonol 2024. [PMID: 38742254 DOI: 10.1002/ppul.27062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/28/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
With the progress in neonatal intensive care, there has been an increase in the survival rates of premature infants. However, this has also led to an increased incidence of neonatal hyperoxia lung injury and bronchopulmonary dysplasia (BPD), whose pathogenesis is believed to be influenced by various prenatal and postnatal factors, although the exact mechanisms remain unclear. Recent studies suggest that multiple mechanisms might be involved in neonatal hyperoxic lung injury and BPD, with sex also possibly playing an important role, and numerous drugs have been proposed and shown promise for improving the treatment outcomes of hyperoxic lung injury. Therefore, this paper aims to analyze and summarize sex differences in neonatal hyperoxic lung injury, potential pathogenesis and treatment progress to provide new ideas for basic and clinical research in this field.
Collapse
Affiliation(s)
- Tian Rao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyang Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chizhang Chen
- Department of Clinical Medicine, Chinese Medicine Hospital of Pingyang, Wenzhou, Zhejiang, China
| | - Jiayi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Danyun Jia
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Korkmaz L, Alan C, Topal İ, Tayfur M, Bozkurt AS, Gürsul C, Baştuğ O. Can amniotic fluid protect developing fetal lungs against the harmful effects of oxidative stress? Turk J Med Sci 2023; 53:109-120. [PMID: 36945927 PMCID: PMC10387876 DOI: 10.55730/1300-0144.5564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/18/2022] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Preterm births cause fetuses to be born without completing the development of their organs. Due to this undesirable situation, it is the pulmonary tissue which has to be most exposed to harmful effects of extrauterine environment. Early disappearance of the prophylactic and constructive effects of amniotic fluid (AF) on developing tissues, such as pulmonary tissue, facilitates the formation of pulmonary morbidities resulting from oxygen. Setting out from this knowledge, we wanted, in addition to assessing the beneficent effects of AF on pulmonary tissue, to study the importance of AF in morbidities of this tissue thought to originate from oxygen. METHODS In this experimental study, while the study group was made up of the fetuses of pregnant rats exposed to hyperbaric oxygen, (hyperoxic pregnant rat fetuses-HPRF), the control group was formed of the fetuses of the rats pregnant in the usual room setting (normoxic pregnant rat fetuses-NPRF). The pulmonary and hepatic tissues taken from the fetuses of these pregnant rats on the 21st day of their pregnancy were compared biochemically and histologically. For biochemical assessment, total glutathione (tGSH), catalase (CAT), malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α) values and for histopathological assessment, apoptosis, alveolar wall count (AWC), vena centralis count (VCC) were included. RESULTS Statistical significance was found in the pulmonary tissue values of tGSH on behalf of NPRF, and MDA on behalf of HPRF (p < 0.05). In liver tissue, statistical significance was detected in tGSH and CAT values in favor of NPRF and in MDA, and TNF-α values in favor of HPRF (p < 0.05). DISCUSSION : Our study has demonstrated that AF protects the pulmonary tissue from the harmful effects of oxygen in the intrauterine period. In addition, our data have suggested that the pulmonary tissue's being deprived of the useful effects of AF owing to premature birth may be an important trigger in the occurrence of the pulmonary morbidities thought to result from oxygen.
Collapse
Affiliation(s)
- Levent Korkmaz
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Cumali Alan
- Department of Pediatrics, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - İsmail Topal
- Department of Pediatrics, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mahir Tayfur
- Department of Pathology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Ali Seydi Bozkurt
- Department of Urology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Cebrail Gürsul
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Osman Baştuğ
- Division of Neonatology, Department of Pediatrics, Kayseri Training and Research Hospital, Kayseri, Turkey
| |
Collapse
|
4
|
Liu D, Xu C, Jiang L, Zhu X. Pulmonary endogenous progenitor stem cell subpopulation: Physiology, pathogenesis, and progress. JOURNAL OF INTENSIVE MEDICINE 2023; 3:38-51. [PMID: 36789358 PMCID: PMC9924023 DOI: 10.1016/j.jointm.2022.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/09/2022] [Accepted: 08/13/2022] [Indexed: 06/18/2023]
Abstract
Lungs are structurally and functionally complex organs consisting of diverse cell types from the proximal to distal axis. They have direct contact with the external environment and are constantly at risk of various injuries. Capable to proliferate and differentiate, pulmonary endogenous progenitor stem cells contribute to the maintenance of lung structure and function both under homeostasis and following injuries. Discovering candidate pulmonary endogenous progenitor stem cell types and underlying regenerative mechanisms provide insights into therapeutic strategy development for lung diseases. In this review, we reveal their compositions, roles in lung disease pathogenesis and injury repair, and the underlying mechanisms. We further underline the advanced progress in research approach and potential therapy for lung regeneration. We also demonstrate the feasibility and prospects of pulmonary endogenous stem cell transplantation for lung disease treatment.
Collapse
Affiliation(s)
- Di Liu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Chufan Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, 800 Xiangyin Road, Shanghai 200433, China
| |
Collapse
|
5
|
Sun W, Liu X, Yang X, Jing X, Duan C, Yang G, Wu C, Huang H, Luo Q, Xia S, Zhang Q, Yang Y, Xu Z. SENP1 regulates the transformation of lung resident mesenchymal stem cells and is associated with idiopathic pulmonary fibrosis progression. Cell Commun Signal 2022; 20:104. [PMID: 35836260 PMCID: PMC9281027 DOI: 10.1186/s12964-022-00921-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung resident mesenchymal stem cells (LR-MSCs) play an important role in idiopathic pulmonary fibrosis (IPF) by transforming into myofibroblasts, thereby losing their repair ability. Evidence suggests that key proteins of multiple signaling pathways are involved in myofibroblast differentiation of LR-MSCs, such as β-Catenin and GLI family zinc finger 1 (GLI1). These proteins are regulated by SUMO (small ubiquitin-like modifier) modification, which is a post-translational modification that promotes protein degradation, while Sumo specific protein 1 (SENP1)-mediated deSUMOylation produces the opposite biological effects. Therefore, we speculated that SENP1 might be a potential target for treating pulmonary fibrosis by preventing the myofibroblast differentiation of LR-MSCs. METHODS LR-MSCs were isolated from mice by using immunomagnetic beads. The extracted LR-MSCs were identified by flow cytometric analysis and multilineage differentiation assays. Lentivirus packaged shRNA silenced the expression of SENP1 in vitro and vivo. The silencing efficacy of SENP1 was verified by real-time quantitative PCR. The effect of down-regulated SENP1 on the myofibroblast differentiation of LR-MSCs was assessed by Immunofluorescence and Western blot. Immunoprecipitation was used to clarify that SENP1 was a key target for regulating the activity of multiple signaling pathways in the direction of LR-MSCs differentiation. LR-MSCs resident in the lung was analyzed with in vivo imaging system. HE and Masson staining was used to evaluate the therapeutic effect of LR-MSCs with SENP1 down-regulation on the lung of BLM mice. RESULTS In this study, we found that the myofibroblast differentiation of LR-MSCs in IPF lung tissue was accompanied by enhanced SENP1-mediated deSUMOylation. The expression of SENP1 increased in LR-MSCs transition of bleomycin (BLM)-induced lung fibrosis. Interfering with expression of SENP1 inhibited the transformation of LR-MSCs into myofibroblasts in vitro and in vivo and restored their therapeutic effect in BLM lung fibrosis. In addition, activation of the WNT/β-Catenin and Hedgehog/GLI signaling pathways depends on SENP1-mediated deSUMOylation. CONCLUSIONS SENP1 might be a potential target to restore the repair function of LR-MSCs and treat pulmonary fibrosis. Video Abstract.
Collapse
Affiliation(s)
- Wei Sun
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, No. 32, Section 2, West 1st ring road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Xiaoshu Liu
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, No. 32, Section 2, West 1st ring road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Xiaoyu Yang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China
| | - Xiaoyan Jing
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China
| | - Chunyan Duan
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, No. 32, Section 2, West 1st ring road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Ganghao Yang
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, No. 32, Section 2, West 1st ring road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Chi Wu
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, No. 32, Section 2, West 1st ring road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Hui Huang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China
| | - Qun Luo
- State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shu Xia
- State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qian Zhang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China
| | - Yang Yang
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, No. 32, Section 2, West 1st ring road, Qingyang District, Chengdu, 610072, Sichuan, China.
| | - Zuojun Xu
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China.
| |
Collapse
|
6
|
LncRNA SNHG6 accelerates hyperoxia-induced lung cell injury via regulating miR-335 to activate KLF5/NF-κB pathway. Cytokine 2022; 157:155914. [PMID: 35809451 DOI: 10.1016/j.cyto.2022.155914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in premature infants, and its pathogenesis has not been clarified. Long non-coding RNAs (lncRNA) have important functions in cell bioactivity. However, their role in developmental lung disease remains unclear. OBJECTIVE The aim of this study was to demonstrate the role of lncRNA SNHG6 (SNHG6) in BPD and its underlying mechanisms. METHODS The blood of patients with BPD were collected, and BPD model of BEAS-2B cells was established by hyperoxia method. SNHG6, miR-335 and KLF5 mRNA expression were detected by RT-qPCR. Western blot was conducted to measure the levels of apoptosis-related proteins' expression and NF-κB pathway related proteins. BEAS-2B cell viability and apoptosis were assessed by CCK-8 and flow cytometry, respectively. Assay Kit was applied to detect ROS, MDA and SOD levels, respectively. ELISA was performed to assess the levels of inflammatory factors. The binding site of miR-335 with SNHG6 or KLF5 were predicted by using DIANA or TargetScan, and which was verified by double luciferase reporter assay. RESULTS Firstly, SNHG6 was highly expressed and miR-335 was lowly expressed in BPD model, SNHG6 knockdown and miR-335 mimics both alleviated hyperoxia-induced lung cell injury, and SNHG6 targeted miR-335. Subsequently, KLF5 was targeted by miR-335, and KLF5 promoted lung cell injury via activating NF-κB pathway. Furthermore, SNHG6 mediated lung cell injury via regulating the miR-335/KLF5/NF-κB pathway. CONCLUSION Our research confirmed that SNHG6 mediated hyperoxia-induced lung cell injury via regulating the miR-335/KLF5/NF-κB pathway. These findings suggest that SNHG6 serves as promising targets for the treatment of newborns with BPD.
Collapse
|
7
|
Mechanism of Adipose-Derived Mesenchymal Stem Cell-Derived Extracellular Vesicles Carrying miR-21-5p in Hyperoxia-Induced Lung Injury. Stem Cell Rev Rep 2021; 18:1007-1024. [PMID: 34882302 DOI: 10.1007/s12015-021-10311-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 01/10/2023]
Abstract
Hyperoxia-induced lung injury (HILI) tends to develop bronchopulmonary dysplasia. Adipose-derived mesenchymal stem cell (ADMSC)-derived extracellular vesicles (EVs) hold great promise in alleviating lung injury. This study explored the mechanism of ADMSC-EVs in HILI. ADMSC-EVs were isolated and identified. The murine and cell models of HILI were established. HILI mice and cells were pre-treated with ADMSC-EVs. The lung dry/wet ratio, pathological structure, apoptosis, and inflammation of HILI mice were measured. The viability, apoptosis, and oxidative stress of HILI cells were measured. The internalization of EVs in lung and cells was observed by fluorescence labeling. The binding relationships between miR-21-5p and SKP2, and Nr2f2 and C/EBPα were analyzed. The binding of SKP2 and Nr2f2 and the Nr2f2 ubiquitination level were detected. ADMSC-EVs exerted preventive effects on HILI mice, evidenced by reduced lung dry/wet ratio, inflammation, and apoptosis in HILI mice. In vitro, EVs enhanced HILI cell viability and reduced apoptosis, inflammation, and oxidative stress. EVs carried miR-21-5p into lung cells to upregulate miR-21-5p expression and thereby target SKP2. SKP2 bound to Nr2f2 and promoted its ubiquitination degradation. EVs inhibited the binding of Nr2f2 and C/EBPα and further suppressed C/EBPα transcription. Collectively, ADMSC-EVs carrying miR-21-5p alleviated HILI via the SKP2/Nr2f2/C/EBPα axis. Role and mechanism of adipose-derived mesenchymal stem cell-derived extracellular vesicles in hyperoxia-induced lung injury. ADMSC-EVs upregulated miR-21-5p expression in cells by carrying miR-21-5p into lung cells, thereby promoting the binding of miR-21-5p and SKP2 mRNA, inhibiting the expression of SKP2, reducing the ubiquitination level of Nr2f2, increasing the expression of Nr2f2, promoting the binding of Nr2f2 and the C/EBPα promoter, upregulating C/EBPα mRNA level, and eventually alleviating HILI.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Clinical trials of mesenchymal stem/stromal cell (MSC) therapy for bronchopulmonary dysplasia (BPD) are underway. A thorough understanding of the preclinical work that underpins these trials is critical for neonatal practitioners to properly evaluate them. RECENT FINDINGS Significant progress has been made in understanding that MSCs have anti-inflammatory and proangiogenic effects, and that these can be mediated by the noncellular exosome fraction of MSCs. SUMMARY In rodent hyperoxia models of BPD, MSCs have a proangiogenic effect mediated largely by vascular endothelial growth factor and shift the balance of endogenous lung cells from a proinflammatory to a prohealing phenotype. MSC-derived exosomes can recapitulate these effects.
Collapse
|
9
|
[Expression of microRNA-495-5p in preterm infants with bronchopulmonary dysplasia: a bioinformatics analysis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22. [PMID: 31948520 PMCID: PMC7389715 DOI: 10.7499/j.issn.1008-8830.2020.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To study the expression of microRNA-495-5p (miRNA-495-5p) in the serum of preterm infants with bronchopulmonary dysplasia (BPD) based on a bioinformatics analysis, and to provide a theoretical basis for further research on the association between miRNA-495-5p and BPD. METHODS A total of 40 preterm infants who were admitted to the neonatal intensive care unit from January 2015 to December 2016 were enrolled. Among these infants, 20 with early clinical manifestations of BPD were enrolled as the BPD group, and 20 without such manifestations were enrolled as the control group. Peripheral blood samples were collected. The miRNA microarray technique was used to screen out differentially expressed miRNAs in serum between the two groups. RT-PCR was used for validation of results. TargetScan, miRDB, and miRWalk databases were used to predict the target genes of miRNA-495-5p. The DAVID database was used to perform gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the target genes. RESULTS Compared with the control group, the BPD group had a significant increase in the expression of miRNA-495-5p in serum (P<0.05). A total of 117 target genes of miRNA-495-5p were predicted by the above three databases and they were involved in several molecular functions (including transcriptional regulatory activity, transcriptional activation activity, and transcription cofactor activity), biological processes (such as metabolic regulation, DNA-dependent transcriptional regulation, and vascular pattern), and cell components (including nucleoplasm, membrane components, and insoluble components) (P<0.05). As for signaling pathways, these genes were significantly enriched in the mTOR signaling pathway (P<0.05). CONCLUSIONS MiRNA-495-5p may be involved in the development and progression of BPD by regulating angiogenesis, stem cell differentiation, apoptosis, and autophagy, which provides clues for further research on the role and functional mechanism of miRNA-495-5p in BPD.
Collapse
|
10
|
Mesenchymal Stem/Stromal Cell Therapy for Bronchopulmonary Dysplasia in the Neonatal Intensive Care Unit. CURRENT PEDIATRICS REPORTS 2019. [DOI: 10.1007/s40124-019-00198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|