1
|
Th17/Treg Imbalance: Implications in Lung Inflammatory Diseases. Int J Mol Sci 2023; 24:ijms24054865. [PMID: 36902294 PMCID: PMC10003150 DOI: 10.3390/ijms24054865] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Regulatory T cells (Tregs) and T helper 17 cells (Th17) are two CD4+ T cell subsets with antagonist effects. Th17 cells promote inflammation, whereas Tregs are crucial in maintaining immune homeostasis. Recent studies suggest that Th17 cells and Treg cells are the foremost players in several inflammatory diseases. In this review, we explore the present knowledge on the role of Th17 cells and Treg cells, focusing on lung inflammatory diseases, such as chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), sarcoidosis, asthma, and pulmonary infectious diseases.
Collapse
|
2
|
Kobayashi S, Phung HT, Kagawa Y, Miyazaki H, Takahashi Y, Asao A, Maruyama T, Yoshimura A, Ishii N, Owada Y. Fatty acid-binding protein 3 controls contact hypersensitivity through regulating skin dermal Vγ4 + γ/δ T cell in a murine model. Allergy 2021; 76:1776-1788. [PMID: 33090507 PMCID: PMC8246717 DOI: 10.1111/all.14630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fatty acid-binding protein 3 (FABP3) is a cytosolic carrier protein of polyunsaturated fatty acids (PUFAs) and regulates cellular metabolism. However, the physiological functions of FABP3 in immune cells and how FABP3 regulates inflammatory responses remain unclear. METHODS Contact hypersensitivity (CHS) induced by 2,4-dinitrofluorobenzene (DNFB) and fluorescein isothiocyanate was applied to the skin wild-type and Fabp3-/- mice. Skin inflammation was assessed using FACS, histological, and qPCR analyses. The development of γ/δ T cells was evaluated by a co-culture system with OP9/Dll1 cells in the presence or absence of transgene of FABP3. RESULTS Fabp3-deficient mice exhibit a more severe phenotype of contact hypersensitivity (CHS) accompanied by infiltration of IL-17-producing Vγ4+ γ/δ T cells that critically control skin inflammation. In Fabp3-/- mice, we found a larger proportion of Vγ4+ γ/δ T cells in the skin, even though the percentage of total γ/δ T cells did not change at steady state. Similarly, juvenile Fabp3-/- mice also contained a higher amount of Vγ4+ γ/δ T cells not only in the skin but in the thymus when compared with wild-type mice. Furthermore, thymic double-negative (DN) cells expressed FABP3, and FABP3 negatively regulates the development of Vγ4+ γ/δ T cells in the thymus. CONCLUSIONS These findings suggest that FABP3 functions as a negative regulator of skin inflammation through limiting pathogenic Vγ4+ γ/δ T-cell generation in the thymus.
Collapse
Affiliation(s)
- Shuhei Kobayashi
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| | - Hai The Phung
- Department of Microbiology and ImmunologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yoshiteru Kagawa
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| | - Hirofumi Miyazaki
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| | - Yu Takahashi
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| | - Atsuko Asao
- Department of Microbiology and ImmunologyTohoku University Graduate School of MedicineSendaiJapan
| | - Takashi Maruyama
- Mucosal Immunology UnitNational Institute of Dental and Craniofacial ResearchNational Institutes of HealthBethesdaMDUSA
| | - Akihiko Yoshimura
- Department of Microbiology and ImmunologyKeio University School of MedicineTokyoJapan
| | - Naoto Ishii
- Department of Microbiology and ImmunologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yuji Owada
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
3
|
Zha X, Yang S, Niu W, Tan L, Xu Y, Zeng J, Tang Y, Sun L, Pang G, Qiao S, Zhang H, Liu T, Zhao H, Zheng N, Zhang Y, Bai H. IL-27/IL-27R Mediates Protective Immunity against Chlamydial Infection by Suppressing Excessive Th17 Responses and Reducing Neutrophil Inflammation. THE JOURNAL OF IMMUNOLOGY 2021; 206:2160-2169. [PMID: 33863788 DOI: 10.4049/jimmunol.2000957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/22/2021] [Indexed: 01/30/2023]
Abstract
IL-27, a heterodimeric cytokine of the IL-12 family, has diverse influences on the development of multiple inflammatory diseases. In this study, we identified the protective role of IL-27/IL-27R in host defense against Chlamydia muridarum respiratory infection and further investigated the immunological mechanism. Our results showed that IL-27 was involved in C. muridarum infection and that IL-27R knockout mice (WSX-1-/- mice) suffered more severe disease, with greater body weight loss, higher chlamydial loads, and more severe inflammatory reactions in the lungs than C57BL/6 wild-type mice. There were excessive IL-17-producing CD4+ T cells and many more neutrophils, neutrophil-related proteins, cytokines, and chemokines in the lungs of WSX-1-/- mice than in wild-type mice following C. muridarum infection. In addition, IL-17/IL-17A-blocking Ab treatment improved disease after C. muridarum infection in WSX-1-/- mice. Overall, we conclude that IL-27/IL-27R mediates protective immunity during chlamydial respiratory infection in mice by suppressing excessive Th17 responses and reducing neutrophil inflammation.
Collapse
Affiliation(s)
- Xiaoyu Zha
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Shuaini Yang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Wenhao Niu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Lu Tan
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Yueyue Xu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Jiajia Zeng
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Yingying Tang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Lida Sun
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Gaoju Pang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Sai Qiao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Hong Zhang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Tengli Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Huili Zhao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Ningbo Zheng
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Yongci Zhang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| | - Hong Bai
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin, People's Republic of China
| |
Collapse
|
4
|
Niu W, Xu Y, Zha X, Zeng J, Qiao S, Yang S, Zhang H, Tan L, Sun L, Pang G, Liu T, Zhao H, Zheng N, Zhang Y, Bai H. IL-21/IL-21R Signaling Aggravated Respiratory Inflammation Induced by Intracellular Bacteria through Regulation of CD4 + T Cell Subset Responses. THE JOURNAL OF IMMUNOLOGY 2021; 206:1586-1596. [PMID: 33608454 DOI: 10.4049/jimmunol.2001107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/19/2021] [Indexed: 12/16/2022]
Abstract
The IL-21/IL-21R interaction plays an important role in a variety of immune diseases; however, the roles and mechanisms in intracellular bacterial infection are not fully understood. In this study, we explored the effect of IL-21/IL-21R on chlamydial respiratory tract infection using a chlamydial respiratory infection model. The results showed that the mRNA expression of IL-21 and IL-21R was increased in Chlamydia muridarum-infected mice, which suggested that IL-21 and IL-21R were involved in host defense against C. muridarum lung infection. IL-21R-/- mice exhibited less body weight loss, a lower bacterial burden, and milder pathological changes in the lungs than wild-type (WT) mice during C. muridarum lung infection. The absolute number and activity of CD4+ T cells and the strength of Th1/Th17 responses in IL-21R-/- mice were significantly higher than those in WT mice after C. muridarum lung infection, but the Th2 response was weaker. Consistently, IL-21R-/- mice showed higher mRNA expression of Th1 transcription factors (T-bet/STAT4), IL-12p40, a Th17 transcription factor (STAT3), and IL-23. The mRNA expression of Th2 transcription factors (GATA3/STAT6), IL-4, IL-10, and TGF-β in IL-21R-/- mice was significantly lower than that in WT mice. Furthermore, the administration of recombinant mouse IL-21 aggravated chlamydial lung infection in C57BL/6 mice and reduced Th1 and Th17 responses following C. muridarum lung infection. These findings demonstrate that IL-21/IL-21R may aggravate chlamydial lung infection by inhibiting Th1 and Th17 responses.
Collapse
Affiliation(s)
- Wenhao Niu
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Yueyue Xu
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Xiaoyu Zha
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Jiajia Zeng
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Sai Qiao
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Shuaini Yang
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Hong Zhang
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Lu Tan
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Lida Sun
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Gaoju Pang
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Tengli Liu
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Huili Zhao
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Ningbo Zheng
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Yongci Zhang
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Hong Bai
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| |
Collapse
|
5
|
Sabbaghi A, Miri SM, Keshavarz M, Mahooti M, Zebardast A, Ghaemi A. Role of γδ T cells in controlling viral infections with a focus on influenza virus: implications for designing novel therapeutic approaches. Virol J 2020; 17:174. [PMID: 33183352 PMCID: PMC7659406 DOI: 10.1186/s12985-020-01449-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Influenza virus infection is among the most detrimental threats to the health of humans and some animals, infecting millions of people annually all around the world and in many thousands of cases giving rise to pneumonia and death. All those health crises happen despite previous and recent developments in anti-influenza vaccination, suggesting the need for employing more sophisticated methods to control this malign infection. Main body The innate immunity modules are at the forefront of combating against influenza infection in the respiratory tract, among which, innate T cells, particularly gamma-delta (γδ) T cells, play a critical role in filling the gap needed for adaptive immune cells maturation, linking the innate and adaptive immunity together. Upon infection with influenza virus, production of cytokines and chemokines including CCL3, CCL4, and CCL5 from respiratory epithelium recruits γδ T cells at the site of infection in a CCR5 receptor-dependent fashion. Next, γδ T cells become activated in response to influenza virus infection and produce large amounts of proinflammatory cytokines, especially IL-17A. Regardless of γδ T cells' roles in triggering the adaptive arm of the immune system, they also protect the respiratory epithelium by cytolytic and non-cytolytic antiviral mechanisms, as well as by enhancing neutrophils and natural killer cells recruitment to the infection site. CONCLUSION In this review, we explored varied strategies of γδ T cells in defense to influenza virus infection and how they can potentially provide balanced protective immune responses against infected cells. The results may provide a potential window for the incorporation of intact or engineered γδ T cells for developing novel antiviral approaches or for immunotherapeutic purposes.
Collapse
Affiliation(s)
- Ailar Sabbaghi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Seyed Mohammad Miri
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehran Mahooti
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Arghavan Zebardast
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran.
| |
Collapse
|
6
|
Song Y, Li Y, Xiao Y, Hu W, Wang X, Wang P, Zhang X, Yang J, Huang Y, He W, Huang C. Neutralization of interleukin-17A alleviates burn-induced intestinal barrier disruption via reducing pro-inflammatory cytokines in a mouse model. BURNS & TRAUMA 2019; 7:37. [PMID: 31890716 PMCID: PMC6933641 DOI: 10.1186/s41038-019-0177-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
Background The intestinal barrier integrity can be disrupted due to burn injury, which is responsible for local and systemic inflammatory responses. Anti-inflammation strategy is one of the proposed therapeutic approaches to control inflammatory cascade at an early stage. Interleukin-17A (IL-17A) plays a critical role in inflammatory diseases. However, the role of IL-17A in the progression of burn-induced intestinal inflammation is poorly understood. In this study, we aimed to investigate the effect of IL-17A and associated pro-inflammatory cytokines that were deeply involved in the pathogenesis of burn-induced intestinal inflammatory injury, and furthermore, we sought to determine the early source of IL-17A in the intestine. Methods Mouse burn model was successfully established with infliction of 30% total body surface area scald burn. The histopathological manifestation, intestinal permeability, zonula occludens-1 expression, pro-inflammatory cytokines were determined with or without IL-17A-neutralization. Flow cytometry was used to detect the major source of IL-17A+ cells in the intestine. Results Burn caused intestinal barrier damage, increase of intestinal permeability, alteration of zonula occludens-1 expressions, elevation of IL-17A, IL-6, IL-1β and tumor necrosis factor-α (TNF-α), whereas IL-17A neutralization dramatically alleviated burn-induced intestinal barrier disruption, maintained zonula occludens-1 expression, and noticeably, inhibited pro-inflammatory cytokines elevation. In addition, we observed that the proportion of intestinal IL-17A+Vγ4+ T subtype cells (but not IL-17A+Vγ1+ T subtype cells) were increased in burn group, and neutralization of IL-17A suppressed this increase. Conclusions The main original findings of this study are intestinal mucosa barrier is disrupted after burn through affecting the expression of pro-inflammatory cytokines, and a protective role of IL-17A neutralization for intestinal mucosa barrier is determined. Furthermore, Vγ4+ T cells are identified as the major early producers of IL-17A that orchestrate an inflammatory response in the burn model. These data suggest that IL-17A blockage may provide a unique target for therapeutic intervention to treat intestinal insult after burn.
Collapse
Affiliation(s)
- Yajun Song
- 1Department of Urology, Xinqiao Hospital, the Third Military Medical University, No.83 Xinqiao Street, Shapingba District, Chongqing, 400038 China
| | - Yang Li
- 1Department of Urology, Xinqiao Hospital, the Third Military Medical University, No.83 Xinqiao Street, Shapingba District, Chongqing, 400038 China
| | - Ya Xiao
- 1Department of Urology, Xinqiao Hospital, the Third Military Medical University, No.83 Xinqiao Street, Shapingba District, Chongqing, 400038 China
| | - Wengang Hu
- 1Department of Urology, Xinqiao Hospital, the Third Military Medical University, No.83 Xinqiao Street, Shapingba District, Chongqing, 400038 China
| | - Xu Wang
- 1Department of Urology, Xinqiao Hospital, the Third Military Medical University, No.83 Xinqiao Street, Shapingba District, Chongqing, 400038 China
| | - Pei Wang
- 2Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, the Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038 China
| | - Xiaorong Zhang
- 2Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, the Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038 China
| | - Jiacai Yang
- 2Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, the Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038 China
| | - Yong Huang
- 2Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, the Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038 China
| | - Weifeng He
- 2Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, the Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038 China
| | - Chibing Huang
- 1Department of Urology, Xinqiao Hospital, the Third Military Medical University, No.83 Xinqiao Street, Shapingba District, Chongqing, 400038 China
| |
Collapse
|
7
|
Sodhi CP, Nguyen J, Yamaguchi Y, Werts AD, Lu P, Ladd MR, Fulton WB, Kovler ML, Wang S, Prindle T, Zhang Y, Lazartigues ED, Holtzman MJ, Alcorn JF, Hackam DJ, Jia H. A Dynamic Variation of Pulmonary ACE2 Is Required to Modulate Neutrophilic Inflammation in Response to Pseudomonas aeruginosa Lung Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 203:3000-3012. [PMID: 31645418 DOI: 10.4049/jimmunol.1900579] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a potent negative regulator capable of restraining overactivation of the renin-angiotensin system, which contributes to exuberant inflammation after bacterial infection. However, the mechanism through which ACE2 modulates this inflammatory response is not well understood. Accumulating evidence indicates that infectious insults perturb ACE2 activity, allowing for uncontrolled inflammation. In the current study, we demonstrate that pulmonary ACE2 levels are dynamically varied during bacterial lung infection, and the fluctuation is critical in determining the severity of bacterial pneumonia. Specifically, we found that a pre-existing and persistent deficiency of active ACE2 led to excessive neutrophil accumulation in mouse lungs subjected to bacterial infection, resulting in a hyperinflammatory response and lung damage. In contrast, pre-existing and persistent increased ACE2 activity reduces neutrophil infiltration and compromises host defense, leading to overwhelming bacterial infection. Further, we found that the interruption of pulmonary ACE2 restitution in the model of bacterial lung infection delays the recovery process from neutrophilic lung inflammation. We observed the beneficial effects of recombinant ACE2 when administered to bacterially infected mouse lungs following an initial inflammatory response. In seeking to elucidate the mechanisms involved, we discovered that ACE2 inhibits neutrophil infiltration and lung inflammation by limiting IL-17 signaling by reducing the activity of the STAT3 pathway. The results suggest that the alteration of active ACE2 is not only a consequence of bacterial lung infection but also a critical component of host defense through modulation of the innate immune response to bacterial lung infection by regulating neutrophil influx.
Collapse
Affiliation(s)
- Chhinder P Sodhi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jenny Nguyen
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Yukihiro Yamaguchi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Adam D Werts
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Peng Lu
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Mitchell R Ladd
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - William B Fulton
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Mark L Kovler
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Sanxia Wang
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Thomas Prindle
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yong Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Eric D Lazartigues
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112.,Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119; and
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - John F Alcorn
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hongpeng Jia
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
| |
Collapse
|
8
|
O’Brien EC, McLoughlin RM. Considering the ‘Alternatives’ for Next-Generation Anti-Staphylococcus aureus Vaccine Development. Trends Mol Med 2019; 25:171-184. [DOI: 10.1016/j.molmed.2018.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
|