1
|
Guo J, Zhao S, Chu X, Wang C, Meng J, Wei S, Wang J, Guo Y, Kong W, Sun W, Zhang T, Dang R, Yang M, Chen J, Jiang P. Angiotensin-converting enzyme 2 modulation of pyroptosis pathway in traumatic brain injury: A potential therapeutic target. Clin Transl Med 2025; 15:e70167. [PMID: 39737729 DOI: 10.1002/ctm2.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025] Open
Affiliation(s)
- Jinxiu Guo
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
| | - Shiyuan Zhao
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
| | - Xue Chu
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
| | - Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, P.R. China
| | - Junjun Meng
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
| | - Shanshan Wei
- Department of Graduate, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, P.R. China
| | - Jianhua Wang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
| | - Yujin Guo
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
| | - Weihua Kong
- Institute of Central Nervous Vascular Injury and Repair, Jining Academy of Medical Sciences, Jining, P.R. China
| | - Wenxue Sun
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Tao Zhang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
| | - Ruili Dang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
| | - Mengqi Yang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University, Jining, P.R. China
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Pei Jiang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, P.R. China
| |
Collapse
|
2
|
Meng YW, Liu JY. Pathological and pharmacological functions of the metabolites of polyunsaturated fatty acids mediated by cyclooxygenases, lipoxygenases, and cytochrome P450s in cancers. Pharmacol Ther 2024; 256:108612. [PMID: 38369063 DOI: 10.1016/j.pharmthera.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Oxylipins have garnered increasing attention because they were consistently shown to play pathological and/or pharmacological roles in the development of multiple cancers. Oxylipins are the metabolites of polyunsaturated fatty acids via both enzymatic and nonenzymatic pathways. The enzymes mediating the metabolism of PUFAs include but not limited to lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P450s (CYPs) pathways, as well as the down-stream enzymes. Here, we systematically summarized the pleiotropic effects of oxylipins in different cancers through pathological and pharmacological aspects, with specific reference to the enzyme-mediated oxylipins. We discussed the specific roles of oxylipins on cancer onset, growth, invasion, and metastasis, as well as the expression changes in the associated metabolic enzymes and the associated underlying mechanisms. In addition, we also discussed the clinical application and potential of oxylipins and related metabolic enzymes as the targets for cancer prevention and treatment. We found the specific function of most oxylipins in cancers, especially the underlying mechanisms and clinic applications, deserves and needs further investigation. We believe that research on oxylipins will provide not only more therapeutic targets for various cancers but also dietary guidance for both cancer patients and healthy humans.
Collapse
Affiliation(s)
- Yi-Wen Meng
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China
| | - Jun-Yan Liu
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
3
|
Parthasarathi KTS, Mandal S, George JP, Gaikwad KB, Sasidharan S, Gundimeda S, Jolly MK, Pandey A, Sharma J. Aberrations in ion channels interacting with lipid metabolism and epithelial-mesenchymal transition in esophageal squamous cell carcinoma. Front Mol Biosci 2023; 10:1201459. [PMID: 37529379 PMCID: PMC10388552 DOI: 10.3389/fmolb.2023.1201459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most prevalent malignant gastrointestinal tumor. Ion channels contribute to tumor growth and progression through interactions with their neighboring molecules including lipids. The dysregulation of membrane ion channels and lipid metabolism may contribute to the epithelial-mesenchymal transition (EMT), leading to metastatic progression. Herein, transcriptome profiles of patients with ESCC were analyzed by performing differential gene expression and weighted gene co-expression network analysis to identify the altered ion channels, lipid metabolism- and EMT-related genes in ESCC. A total of 1,081 differentially expressed genes, including 113 ion channels, 487 lipid metabolism-related, and 537 EMT-related genes, were identified in patients with ESCC. Thereafter, EMT scores were correlated with altered co-expressed genes. The altered co-expressed genes indicated a correlation with EMT signatures. Interactions among 22 ion channels with 3 hub lipid metabolism- and 13 hub EMT-related proteins were determined using protein-protein interaction networks. A pathway map was generated to depict deregulated signaling pathways including insulin resistance and the estrogen receptor-Ca2+ signaling pathway in ESCC. The relationship between potential ion channels and 5-year survival rates in ESCC was determined using Kaplan-Meier plots and Cox proportional hazard regression analysis. Inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) was found to be associated with poor prognosis of patients with ESCC. Additionally, drugs interacting with potential ion channels, including GJA1 and ITPR3, were identified. Understanding alterations in ion channels with lipid metabolism and EMT in ESCC pathophysiology would most likely provide potential targets for the better treatment of patients with ESCC.
Collapse
Affiliation(s)
- K. T. Shreya Parthasarathi
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Susmita Mandal
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - John Philip George
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | | | - Sruthi Sasidharan
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Seetaramanjaneyulu Gundimeda
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Rochester, MN, United States
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Center for Individualized Medicine, Rochester, MN, United States
| | - Jyoti Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
4
|
Jiang W, Wei Q, Xie H, Wu D, He H, Lv X. Effect of PTGES3 on the Prognosis and Immune Regulation in Lung Adenocarcinoma. Anal Cell Pathol (Amst) 2023; 2023:4522045. [PMID: 37416927 PMCID: PMC10322580 DOI: 10.1155/2023/4522045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/10/2023] [Accepted: 05/04/2023] [Indexed: 07/08/2023] Open
Abstract
Background PTGES3 is upregulated in multiple cancer types and promotes tumorigenesis and progression. However, the clinical outcome and immune regulation of PTGES3 in lung adenocarcinoma (LUAD) are not fully understood. This study aimed to explore the expression level and prognostic value of PTGES3 and its correlation with potential immunotherapy in LUAD. Methods All data were obtained from several databases, including the Cancer Genome Atlas database. Firstly, gene and protein expression of PTGES3 were analyzed using Tumor Immune Estimation Resource (TIMER), R software, Clinical Proteomic Tumor Analysis Consortium (CPTAC), and Human Protein Atlas (HPA). Thereafter, survival analysis was conducted using the R software, Gene Expression Profiling Interactive Analysis 2 (GEPIA2), and Kaplan-Meier Plotter. In addition, gene alteration and mutation analyses were conducted using the cBio Cancer Genomics Portal (cBioPortal) and Catalog of Somatic Mutations in Cancer (COSMIC) databases. The molecular mechanisms associated with PTGES3 were assessed via Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), GeneMANIA, GEPIA2, and R software. Lastly, the role of PTGES3 in immune regulation in LUAD was investigated using TIMER, Tumor-Immune System Interaction Database (TISIDB), and SangerBox. Results The gene and protein expression of PTGES3 were elevated in LUAD tissues and compared to the normal tissues, and the high expression of PTGES3 was correlated with cancer stage and tumor grade. Survival analysis revealed that overexpression of PTGES3 was associated with poor prognosis of LUAD patients. Moreover, gene alteration and mutation analysis revealed the occurrence of several types of PTGES3 gene alterations in LUAD. Moreover, co-expression analysis and cross-analysis revealed that three genes, including CACYBP, HNRNPC, and TCP1, were correlated and interacted with PTGES3. Functional analysis of these genes revealed that PTGES3 was primarily enriched in oocyte meiosis, progesterone-mediated oocyte maturation, and arachidonic acid metabolism pathways. Furthermore, we found that PTGES3 participated in a complex immune regulation network in LUAD. Conclusion The current study indicated the crucial role of PTGES3 in LUAD prognosis and immune regulation. Altogether, our results suggested that PTGES3 could serve as a promising therapeutic and prognosis biomarker for the LUAD.
Collapse
Affiliation(s)
- Wenyan Jiang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Qiong Wei
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Haiqin Xie
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Dandan Wu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Haiyan He
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xuedong Lv
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
5
|
Prostanoid Signaling in Cancers: Expression and Regulation Patterns of Enzymes and Receptors. BIOLOGY 2022; 11:biology11040590. [PMID: 35453789 PMCID: PMC9029281 DOI: 10.3390/biology11040590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Cancer-associated disturbance of prostanoid signaling provides an aberrant accumulation of prostanoids. This signaling consists of 19 target genes, encoding metabolic enzymes and G-protein-coupled receptors, and prostanoids (prostacyclin, thromboxane, and prostaglandins E2, F2α, D2, H2). The study addresses the systems biology analysis of target genes in 24 solid tumors using a data mining pipeline. We analyzed differential expression patterns of genes and proteins, promoter methylation status as well as tissue-specific master regulators and microRNAs. Tumor types were clustered into several groups according to gene expression patterns. Target genes were characterized as low mutated in tumors, with the exception of melanoma. We found at least six ubiquitin ligases and eight protein kinases that post-translationally modified the most connected proteins PTGES3 and PTGIS. Models of regulation of PTGIS and PTGIR gene expression in lung and uterine cancers were suggested. For the first time, we found associations between the patient’s overall survival rates with nine multigene transcriptomics signatures in eight tumors. Expression patterns of each of the six target genes have predictive value with respect to cytostatic therapy response. One of the consequences of the study is an assumption of prostanoid-dependent (or independent) tumor phenotypes. Thus, pharmacologic targeting the prostanoid signaling could be a probable additional anticancer strategy.
Collapse
|
6
|
Identification of a novel metabolism-related gene signature associated with the survival of bladder cancer. BMC Cancer 2021; 21:1267. [PMID: 34819038 PMCID: PMC8611960 DOI: 10.1186/s12885-021-09006-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
Background Bladder cancer (BC) is one of the most common malignancies and has a relatively poor outcome worldwide. In this study, we attempted to construct a novel metabolism-related gene (MRG) signature for predicting the survival probability of BC patients. Methods First, differentially expressed MRGs between BC and normal samples were identified and used to construct a protein-protein interaction (PPI) network and perform mutation analysis. Next, univariate Cox regression analysis was utilized to select prognostic genes, and multivariate Cox regression analysis was applied to establish an MRG signature for predicting the survival probability of BC patients. Moreover, Kaplan-Meier (KM) survival analysis and receiver operating characteristic (ROC) analysis were performed to evaluate the predictive capability of the MRG signature. Finally, a nomogram based on the MRG signature was established to better predict the survival of BC. Results In the present study, 27 differentially expressed MRGs were identified, most of which presented mutations in BC patients, and LRP1 showed the highest mutation rate. Next, an MRG signature, including MAOB, FASN and LRP1, was established by using univariate and multivariate Cox regression analysis. Furthermore, survival analysis indicated that BC patients in the high-risk group had a dramatically lower survival probability than those in the low-risk group. Finally, Cox regression analysis showed that the risk score was an independent prognostic factor, and a nomogram integrating age, pathological tumor stage and risk score was established and presented good predictive ability. Conclusion We successfully constructed a novel MRG signature to predict the prognosis of BC patients, which might contribute to the clinical treatment of BC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-09006-w.
Collapse
|
7
|
Song P, Shen X. Juice from Fructus Rosae Roxburghii normalizes blood lipids in mice with diet-induced hyperlipidemia* †. Food Sci Nutr 2020; 8:6069-6082. [PMID: 33282259 PMCID: PMC7684604 DOI: 10.1002/fsn3.1897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 12/18/2022] Open
Abstract
Fructus Rosae Roxburghii (FRR) as a dietary supplement is considered to possess anti-atherosclerosis (AS), and hyperlipidemia (HLP) is material basis for AS formation, so the effects and molecular mechanism of FRR on diet-induced hyperlipidemic mice were explored. In Diet IV2 group, hepatic steatosis was significantly relieved; meanwhile, TC, TG, LDL-C, HDL-C, and ASI in serum were regulated to control level. Thirty-seven DCEG in Diet I, Diet II, and Diet IV2 groups were obtained by RNA-seq analysis. Relative mRNA levels were further determined by qRT-PCR, of which 28 genes were matched with those detected by RNA-seq. Ten DCEP were verified by targeted quantitative proteomic analysis, but expressive patterns of only six proteins were correlated with qRT-PCR data. These DCEG and DCEP played important roles in regulating the biosynthesis of BAs and steroids, fatty acid metabolism, and LPO production. They might cooperatively regulate the function of HDL or RCT by PPAR signaling pathway under the FRR action. As we know, it is the first time the potential anti-atherosclerotic mechanism of FRR regulating the blood lipids was explored.
Collapse
Affiliation(s)
- Pingping Song
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Key Laboratory of Optimal Utilization of Natural Medicine ResourcesSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuiyangChina
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Key Laboratory of Optimal Utilization of Natural Medicine ResourcesSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
8
|
Zhang Y, Yuan Z, Shen R, Jiang Y, Xu W, Gu M, Gu X. Identification of biomarkers predicting the chemotherapeutic outcomes of capecitabine and oxaliplatin in patients with gastric cancer. Oncol Lett 2020; 20:290. [PMID: 33029206 PMCID: PMC7530885 DOI: 10.3892/ol.2020.12153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
The capecitabine and oxaliplatin (CapeOX) regimen is a commonly used adjuvant chemotherapeutic regimen for gastric cancer (GC). However, some patients exhibit a poor chemotherapy response due to genetic differences among individuals. Therefore, finding an effective sensitization strategy for CapeOX is important in the treatment of GC. The present study aimed to investigate the predictive biomarkers of the CapeOX chemotherapeutic outcomes for patients with GC. A total of 30 differentially expressed genes (DEGs) were identified using the gene expression profiles from The Cancer Genome Atlas capecitabine and oxaliplatin treatment GC cases and seven key DEGs [uroplakin-1b (UPK1B), fatty acid-binding protein, heart (FABP3), cystatin-M, caspase-5 (CASP5), corticosteroid 11-β-dehydrogenase isozyme 2, cytochrome P450 4X1 (CYP4X1) and epidermal growth factor receptor kinase substrate 8-like protein 3] were associated with survival. Gene validation was performed in clinical samples divided into recurrence and nonrecurrence groups. Patients with high or low expression of UPK1B, FABP3, CASP5 and CYP4X1 had markedly different overall survival rates. A model was established and the area under the curve of the receiver operating characteristic reached 0.875 (0.793–0.957), indicating that the model had good sensitivity and specificity.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| | - Zhen Yuan
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| | - Renbin Shen
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| | - Yannan Jiang
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| | - Wei Xu
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| | - Menghui Gu
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| | - Xinhua Gu
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
9
|
The biological role of arachidonic acid 12-lipoxygenase (ALOX12) in various human diseases. Biomed Pharmacother 2020; 129:110354. [DOI: 10.1016/j.biopha.2020.110354] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
|
10
|
Circulating levels of free 25(OH)D increase at the onset of rheumatoid arthritis. PLoS One 2019; 14:e0219109. [PMID: 31557191 PMCID: PMC6763124 DOI: 10.1371/journal.pone.0219109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/03/2019] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Epidemiological studies suggest vitamin D deficiency as a potential risk factor for rheumatoid arthritis (RA) development, a chronic autoimmune disorder highly prevalent in indigenous North American (INA) population. We therefore profiled the circulating levels of 25-hydroxyvitaminD [25(OH)D], an active metabolite of vitamin D, in a cohort of at-risk first-degree relatives (FDR) of INA RA patients, a subset of whom subsequently developed RA (progressors). METHODS 2007 onward, serum samples from INA RA patients and FDR were collected at the time of a structured baseline visit and stored at -20°C. Anti-citrullinated protein antibodies (ACPA), 25(OH)D, hs-CRP, vitamin-D binding protein (VDBP) and parathyroid hormone (PTH) levels were determined using ELISA and rheumatoid factor (RF) seropositivity was determined by nephelometry. RESULTS We demonstrate that 25 (OH) D concentrations were lower in winter than summer (P = 0.0538), and that serum 25(OH)D levels were higher in samples collected and stored after 2013 (P<0.0001). Analysis of samples obtained after 2013 demonstrated that 37.6% of study participants were 25(OH)D insufficient (<75nmol/L). Also, seropositive RA patients and FDR had lower 25(OH)D levels compared to ACPA-/FDR (P<0.05, P<0.01 respectively). Linear regression analysis showed 25(OH)D insufficiency was inversely associated with presence of RA autoantibodies. Longitudinal samples from 14 progressors demonstrated a consistent increase in 25(OH)D levels at the time they exhibited clinically detectable joint inflammation, without any significant change in VDBP or PTH levels. Spearman rank correlation analysis showed significant association between 25(OH)D and PTH levels, both in RA patients and progressors at RA onset time. CONCLUSION We demonstrate that 25(OH)D levels in serum increased at RA onset in progressors. The potential role that vitamin D metabolites and their downstream effects play in RA transition requires further investigation.
Collapse
|