1
|
Sveva V, Cruciani A, Mancuso M, Santoro F, Latorre A, Monticone M, Rocchi L. Cerebellar Non-Invasive Brain Stimulation: A Frontier in Chronic Pain Therapy. J Pers Med 2024; 14:675. [PMID: 39063929 PMCID: PMC11277881 DOI: 10.3390/jpm14070675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic pain poses a widespread and distressing challenge; it can be resistant to conventional therapies, often having significant side effects. Non-invasive brain stimulation (NIBS) techniques offer promising avenues for the safe and swift modulation of brain excitability. NIBS approaches for chronic pain management targeting the primary motor area have yielded variable outcomes. Recently, the cerebellum has emerged as a pivotal hub in human pain processing; however, the clinical application of cerebellar NIBS in chronic pain treatment remains limited. This review delineates the cerebellum's role in pain modulation, recent advancements in NIBS for cerebellar activity modulation, and novel biomarkers for assessing cerebellar function in humans. Despite notable progress in NIBS techniques and cerebellar activity assessment, studies targeting cerebellar NIBS for chronic pain treatment are limited in number. Nevertheless, positive outcomes in pain alleviation have been reported with cerebellar anodal transcranial direct current stimulation. Our review underscores the potential for further integration between cerebellar NIBS and non-invasive assessments of cerebellar function to advance chronic pain treatment strategies.
Collapse
Affiliation(s)
- Valerio Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Alessandro Cruciani
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (F.S.)
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Marco Mancuso
- Department of Human Neuroscience, University of Rome “Sapienza”, Viale dell’Università 30, 00185 Rome, Italy;
| | - Francesca Santoro
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (F.S.)
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Marco Monticone
- Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
2
|
Fong PY, Spampinato D, Michell K, Mancuso M, Brown K, Ibáñez J, Santo AD, Latorre A, Bhatia K, Rothwell JC, Rocchi L. EEG responses induced by cerebellar TMS at rest and during visuomotor adaptation. Neuroimage 2023; 275:120188. [PMID: 37230209 DOI: 10.1016/j.neuroimage.2023.120188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Connections between the cerebellum and the cortex play a critical role in learning and executing complex behaviours. Dual-coil transcranial magnetic stimulation (TMS) can be used non-invasively to probe connectivity changes between the lateral cerebellum and motor cortex (M1) using the motor evoked potential as an outcome measure (cerebellar-brain inhibition, CBI). However, it gives no information about cerebellar connections to other parts of cortex. OBJECTIVES We used electroencephalography (EEG) to investigate whether it was possible to detect activity evoked in any areas of cortex by single-pulse TMS of the cerebellum (cerebellar TMS evoked potentials, cbTEPs). A second experiment tested if these responses were influenced by the performance of a cerebellar-dependent motor learning paradigm. METHODS In the first series of experiments, TMS was applied over either the right or left cerebellar cortex, and scalp EEG was recorded simultaneously. Control conditions that mimicked auditory and somatosensory inputs associated with cerebellar TMS were included to identify responses due to non-cerebellar sensory stimulation. We conducted a follow-up experiment that evaluated whether cbTEPs are behaviourally sensitive by assessing individuals before and after learning a visuomotor reach adaptation task. RESULTS A TMS pulse over the lateral cerebellum evoked EEG responses that could be distinguished from those caused by auditory and sensory artefacts. Significant positive (P80) and negative peaks (N110) over the contralateral frontal cerebral area were identified with a mirrored scalp distribution after left vs. right cerebellar stimulation. The P80 and N110 peaks were replicated in the cerebellar motor learning experiment and changed amplitude at different stages of learning. The change in amplitude of the P80 peak was associated with the degree of learning that individuals retained following adaptation. Due to overlap with sensory responses, the N110 should be interpreted with caution. CONCLUSIONS Cerebral potentials evoked by TMS of the lateral cerebellum provide a neurophysiological probe of cerebellar function that complements the existing CBI method. They may provide novel insight into mechanisms of visuomotor adaptation and other cognitive processes.
Collapse
Affiliation(s)
- Po-Yu Fong
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Division of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan; Medical School, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Danny Spampinato
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Non-invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306/354, 00142, Rome, Italy
| | - Kevin Michell
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marco Mancuso
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Katlyn Brown
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Jaime Ibáñez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; BSICoS group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain; Department of Bioengineering, Imperial College, London, UK
| | - Alessandro Di Santo
- NEuroMuscular Omnicentre (NEMO), Serena Onlus, AOS Monaldi, Naples, Italy; Unit of Neurology, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kailash Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Li R, Li Q, Chu X, Li L, Li X, Li J, Yang Z, Xu M, Luo C, Zhang K. Role of cerebellar cortex in associative learning and memory in guinea pigs. Open Life Sci 2022; 17:1208-1216. [PMID: 36185409 PMCID: PMC9482424 DOI: 10.1515/biol-2022-0471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Time-related cognitive function refers to the capacity of the brain to store, extract, and process specific information. Previous studies demonstrated that the cerebellar cortex participates in advanced cognitive functions, but the role of the cerebellar cortex in cognitive functions is unclear. We established a behavioral model using classical eyeblink conditioning to study the role of the cerebellar cortex in associative learning and memory and the underlying mechanisms. We performed an investigation to determine whether eyeblink conditioning could be established by placing the stimulating electrode in the middle cerebellar peduncle. Behavior training was performed using a microcurrent pulse as a conditioned stimulus to stimulate the middle cerebellar peduncle and corneal blow as an unconditioned stimulus. After 10 consecutive days of training, a conditioned response was successfully achieved in the Delay, Trace-200-ms, and Trace-300-ms groups of guinea pigs, with acquisition rates of >60%, but the Trace-400-ms and control groups did not achieve a conditioned stimulus-related blink conditioned response. It could be a good model for studying the function of the cerebellum during the establishment of eyeblink conditioning.
Collapse
Affiliation(s)
- Rui Li
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Qi Li
- Department of Rehabilitation Medicine, Tianjin Hospital Tianjin University, Jiefang South Road 406, Tianjin 300211, Tianjin, China.,Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, Tianjin, China
| | - Xiaolei Chu
- Department of Rehabilitation Medicine, Tianjin Hospital Tianjin University, Jiefang South Road 406, Tianjin 300211, Tianjin, China
| | - Lan Li
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Xiaoyi Li
- Department of Neuroelectrophysiology, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Juan Li
- Department of Using Quality Management, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Zhen Yang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Mingjing Xu
- Department of Rehabilitation, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Changlu Luo
- Department of Rehabilitation, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Kui Zhang
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| |
Collapse
|
4
|
Matsugi A, Mori N, Hosomi K, Saitoh Y. Cerebellar repetitive transcranial magnetic stimulation modulates the motor learning of visually guided voluntary postural control task. Neurosci Lett 2022; 788:136859. [PMID: 36038031 DOI: 10.1016/j.neulet.2022.136859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
Abstract
We investigated whether vermal cerebellar low-frequency repetitive transcranial magnetic stimulation (crTMS) affects motor learning of visually guided postural tracking training (VTT) using foot center of pressure (COP) as well as the stability and sensory contribution of upright standing. Twenty-one healthy volunteers participated (10 in the sham-crTMS group and 11 in the active-crTMS group). For VTT, participants stood on the force plate 1.5 m from the monitor on which the COP and target moved in a circle. Participants tracked the target with their own COP for 1 min, and 10 VTT sessions were conducted. The tracking error (TE) was compared between trials. Active- or sham-crTMS sessions were conducted prior to VTT. At baseline (before crTMS), pre-VTT (after crTMS), and post-VTT, the COP trajectory during upright static standing under four conditions (eyes, open/closed; surface, hard/rubber) was recorded. Comparison of the length of the COP trajectory or path and sensory-contribution-rate showed no significant difference between baseline and pre- and post-VTT. There was a significant decrease in TE in the sham-crTMS but not in the active-crTMS group. VTT and crTMS did not immediately affect the stability and sensory contribution of upright standing; however, crTMS immediately affected motor learning. The vermal cerebellum may contribute to motor learning of voluntary postural control.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Hojo 5-11-10, Daitou City, Osaka 574-0011, Japan.
| | - Nobuhiko Mori
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka 565-0871, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka 565-0871, Japan
| | - Youichi Saitoh
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Machikaneyama 1-3, Toyonaka City, Osaka 560-8531, Japan; Tokuyukai Rehabilitation Clinic, Shinsenri-nishimachi 2-24-18, Toyonaka City, Osaka 560-0083, Japan
| |
Collapse
|
5
|
Li D, Cheng A, Zhang Z, Sun Y, Liu Y. Effects of low-frequency repetitive transcranial magnetic stimulation combined with cerebellar continuous theta burst stimulation on spasticity and limb dyskinesia in patients with stroke. BMC Neurol 2021; 21:369. [PMID: 34560841 PMCID: PMC8461848 DOI: 10.1186/s12883-021-02406-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) has been reported to treat muscle spasticity in post-stroke patients. The purpose of this study was to explore whether combined low-frequency rTMS (LF-rTMS) and cerebellar continuous theta burst stimulation (cTBS) could provide better relief than different modalities alone for muscle spasticity and limb dyskinesia in stroke patients. Methods This study recruited ninety stroke patients with hemiplegia, who were divided into LF-rTMS+cTBS group (n=30), LF-rTMS group (n=30) and cTBS group (three pulse bursts at 50 Hz, n=30). The LF-rTMS group received 1 Hz rTMS stimulation of the motor cortical (M1) region on the unaffected side of the brain, the cTBS group received cTBS stimulation to the cerebellar region, and the LF-rTMS+cTBS group received 2 stimuli as described above. Each group received 4 weeks of stimulation followed by rehabilitation. Muscle spasticity, motor function of limb and activity of daily living (ADL) were evaluated by modified Ashworth Scale (MAS), Fugl-Meyer Assessment (FMA) and Modified Barthel Index (MBI) scores, respectively. Results The MAS score was markedly decreased, FMA and MBI scores were markedly increased in the three groups after therapy than before therapy. In addition, after therapy, LF-rTMS+cTBS group showed lower MAS score, higher FMA and MBI scores than the LF-rTMS group and cTBS group. Conclusion Muscle spasticity and limb dyskinesia of the three groups are all significantly improved after therapy. Combined LF-rTMS and cTBS treatment is more effective in improving muscle spasticity and limb dyskinesia of patients after stroke than LF-rTMS and cTBS treatment alone.
Collapse
Affiliation(s)
- Dawei Li
- Department of Neurological Rehabilitation, Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying, 257000, Shandong, China
| | - Aixia Cheng
- Department of Neurological Rehabilitation, Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying, 257000, Shandong, China
| | - Zhiyou Zhang
- Department of Neurological Rehabilitation, Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying, 257000, Shandong, China
| | - Yuqian Sun
- Department of Neurological Rehabilitation, Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying, 257000, Shandong, China
| | - Yingchun Liu
- Department of Neurological Rehabilitation, Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying, 257000, Shandong, China.
| |
Collapse
|
6
|
Gatti D, Rinaldi L, Cristea I, Vecchi T. Probing cerebellar involvement in cognition through a meta-analysis of TMS evidence. Sci Rep 2021; 11:14777. [PMID: 34285287 PMCID: PMC8292349 DOI: 10.1038/s41598-021-94051-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Traditionally, the cerebellum has been linked to motor coordination, but growing evidence points to its involvement in a wide range of non-motor functions. Though the number of studies using transcranial magnetic stimulation (TMS) to investigate cerebellar involvement in cognitive processes is growing exponentially, these findings have not yet been synthesized in a meta-analysis. Here, we used meta-analysis to estimate the effects of cerebellar TMS on performance in cognitive tasks for healthy participants. Outcomes included participants' accuracy and response times (RTs) of several non-motor tasks performed either during or after the administration of TMS. We included overall 41 studies, of which 44 single experiments reported effects on accuracy and 41 on response times (RTs). The meta-analyses showed medium effect sizes (for accuracy: d = 0.61 [95% CI = 0.48, .073]; for RTs: d = 0.40 [95% CI = 0.30, 0.49]), with leave-one-out analyses indicating that cumulative effects were robust, and with moderate heterogeneity. For both accuracy and RTs, the effect of TMS was moderated by the stimulation paradigm adopted but not by the cognitive function investigated, while the timing of the stimulation moderated only the effects on RTs. Further analyses on lateralization revealed no moderation effects of the TMS site. Taken together, these findings indicate that TMS administered over the cerebellum is able to modulate cognitive performance, affecting accuracy or RTs, and suggest that the various stimulation paradigms play a key role in determining the efficacy of cerebellar TMS.
Collapse
Affiliation(s)
- Daniele Gatti
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy
| | - Luca Rinaldi
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy ,grid.419416.f0000 0004 1760 3107Cognitive Psychology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Ioana Cristea
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy
| | - Tomaso Vecchi
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy ,grid.419416.f0000 0004 1760 3107Cognitive Psychology Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
7
|
Latorre A, Rocchi L, Batla A, Berardelli A, Rothwell JC, Bhatia KP. The Signature of Primary Writing Tremor Is Dystonic. Mov Disord 2021; 36:1715-1720. [PMID: 33786886 DOI: 10.1002/mds.28579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND It has been debated for decades whether primary writing tremor is a form of dystonic tremor, a variant of essential tremor, or a separate entity. We wished to test the hypothesis that primary writing tremor and dystonia share a common pathophysiology. OBJECTIVES The objective of the present study was to investigate the pathophysiological hallmarks of dystonia in patients affected by primary writing tremor. METHODS Ten patients with idiopathic dystonic tremor syndrome, 7 with primary writing tremor, 10 with essential tremor, and 10 healthy subjects were recruited. They underwent eyeblink classic conditioning, blink recovery cycle, and transcranial magnetic stimulation assessment, including motor-evoked potentials and short- and long-interval intracortical inhibition at baseline. Transcranial magnetic stimulation measures were also recorded after paired-associative plasticity protocol. RESULTS Primary writing tremor and dystonic tremor syndrome had a similar pattern of electrophysiological abnormalities, consisting of reduced eyeblink classic conditioning learning, reduced blink recovery cycle inhibition, and a lack of effect of paired-associative plasticity on long-interval intracortical inhibition. The latter 2 differ from those obtained in essential tremor and healthy subjects. Although not significant, slightly reduced short-interval intracortical inhibition and a larger effect of paired-associative plasticity in primary writing tremor and dystonic tremor syndrome, compared with essential tremor and healthy subjects, was observed. CONCLUSIONS Our initial hypothesis of a common pathophysiology between dystonia and primary writing tremor has been confirmed. Primary writing tremor might be considered a form of dystonic tremor. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London, London, UK.,Department of Human Neurosciences, University of Rome "Sapienza,", Rome, Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London, London, UK.,Department of Medical Sciences and Public Health, University of Cagliari, 09124, Cagliari, Italy
| | - Amit Batla
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London, London, UK
| | - Alfredo Berardelli
- Department of Human Neurosciences, University of Rome "Sapienza,", Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London, London, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London, London, UK
| |
Collapse
|
8
|
Latorre A, Rocchi L, Magrinelli F, Mulroy E, Berardelli A, Rothwell JC, Bhatia KP. Unravelling the enigma of cortical tremor and other forms of cortical myoclonus. Brain 2021; 143:2653-2663. [PMID: 32417917 DOI: 10.1093/brain/awaa129] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/11/2020] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Cortical tremor is a fine rhythmic oscillation involving distal upper limbs, linked to increased sensorimotor cortex excitability, as seen in cortical myoclonus. Cortical tremor is the hallmark feature of autosomal dominant familial cortical myoclonic tremor and epilepsy (FCMTE), a syndrome not yet officially recognized and characterized by clinical and genetic heterogeneity. Non-coding repeat expansions in different genes have been recently recognized to play an essential role in its pathogenesis. Cortical tremor is considered a rhythmic variant of cortical myoclonus and is part of the 'spectrum of cortical myoclonus', i.e. a wide range of clinical motor phenomena, from reflex myoclonus to myoclonic epilepsy, caused by abnormal sensorimotor cortical discharges. The aim of this update is to provide a detailed analysis of the mechanisms defining cortical tremor, as seen in FCMTE. After reviewing the clinical and genetic features of FCMTE, we discuss the possible mechanisms generating the distinct elements of the cortical myoclonus spectrum, and how cortical tremor fits into it. We propose that the spectrum is due to the evolution from a spatially limited focus of excitability to recruitment of more complex mechanisms capable of sustaining repetitive activity, overcoming inhibitory mechanisms that restrict excitatory bursts, and engaging wide areas of cortex. Finally, we provide evidence for a possible common denominator of the elements of the spectrum, i.e. the cerebellum, and discuss its role in FCMTE, according to recent genetic findings.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
- Department of Human Neurosciences, Sapienza University of Rome, Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
9
|
Spampinato D, Avci E, Rothwell J, Rocchi L. Frequency-dependent modulation of cerebellar excitability during the application of non-invasive alternating current stimulation. Brain Stimul 2021; 14:277-283. [PMID: 33482375 PMCID: PMC7970622 DOI: 10.1016/j.brs.2021.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 12/30/2022] Open
Abstract
Background it is well-known that the cerebellum is critical for the integrity of motor and cognitive actions. Applying non-invasive brain stimulation techniques over this region results in neurophysiological and behavioural changes, which have been associated with the modulation of cerebellar-cerebral cortex connectivity. Here, we investigated whether online application of cerebellar transcranial alternating current stimulation (tACS) results in changes to this pathway. Methods thirteen healthy individuals participated in two sessions of cerebellar tACS delivered at different frequencies (5Hz and 50Hz). We used transcranial magnetic stimulation to measure cerebellar-motor cortex (M1) inhibition (CBI), short-intracortical inhibition (SICI) and short-afferent inhibition (SAI) before, during and after the application of tACS. Results we found that CBI was specifically strengthened during the application of 5Hz cerebellar tACS. No changes were detected immediately following the application of 5Hz stimulation, nor at any time point with 50Hz stimulation. We also found no changes to M1 intracortical circuits (i.e. SICI) or sensorimotor interaction (i.e. SAI), indicating that the effects of 5Hz tACS over the cerebellum are site-specific. Conclusions cerebellar tACS can modulate cerebellar excitability in a time- and frequency-dependent manner. Additionally, cerebellar tACS does not appear to induce any long-lasting effects (i.e. plasticity), suggesting that stimulation enhances oscillations within the cerebellum only throughout the stimulation period. As such, cerebellar tACS may have significant implications for diseases manifesting with abnormal cerebellar oscillatory activity and also for future behavioural studies. Cerebellar tACS increases the inhibitory tone that the cerebellum exerts over M1 (CBI). CBI changes were found only during the online application of 5Hz tACS and not immediately following stimulation. The effects are specific to the cerebellum, as no changes were found in intracortical measures (e.g. SICI and SAI).
Collapse
Affiliation(s)
- Danny Spampinato
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, United Kingdom; Non-invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306/354, 00142, Rome, Italy.
| | - Esin Avci
- Department of Sport and Sport Science, Institute of Biology, University of Freiburg, Germany
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, United Kingdom
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, United Kingdom
| |
Collapse
|
10
|
Latorre A, Rocchi L, Bhatia KP. Delineating the electrophysiological signature of dystonia. Exp Brain Res 2020; 238:1685-1692. [PMID: 32712678 DOI: 10.1007/s00221-020-05863-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Over the last 30 years, the concept of dystonia has dramatically changed, from being considered a motor neurosis, to a pure basal ganglia disorder, to finally reach the definition of a network disorder involving the basal ganglia, cerebellum, thalamus and sensorimotor cortex. This progress has been possible due to the collaboration between clinicians and scientists, and the development of increasingly sophisticated electrophysiological techniques able to non-invasively investigate pathophysiological mechanisms in humans. This review is a chronological excursus of the electrophysiological studies that laid the foundation for the understanding of the pathophysiology of dystonia and delineated its electrophysiological signatures. Evidence for neurophysiological abnormalities is grouped according to the neural system involved, and a unifying theory, bringing together all the hypothesis and evidence provided to date, is proposed at the end.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
11
|
Hurtado-Puerto AM, Nestor K, Eldaief M, Camprodon JA. Safety Considerations for Cerebellar Theta Burst Stimulation. Clin Ther 2020; 42:1169-1190.e1. [PMID: 32674957 DOI: 10.1016/j.clinthera.2020.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE The cerebellum is an intricate neural structure that orchestrates various cognitive and behavioral functions. In recent years, there has been an increasing interest in neuromodulation of the cerebellum with transcranial magnetic stimulation (TMS) for therapeutic and basic science applications. Theta burst stimulation (TBS) is an efficient and powerful TMS protocol that is able to induce longer-lasting effects with shorter stimulation times compared with traditional TMS. Parameters for cerebellar TBS are traditionally framed in the bounds of TBS to the cerebral cortex, even when the 2 have distinct histologic, anatomical, and functional characteristics. Tolerability limits have not been systematically explored in the literature for this specific application. Therefore, we aimed to determine the stimulation parameters that have been used for cerebellar. TBS to date and evaluate adverse events and adverse effects related to stimulation parameters. METHODS We used PubMed to perform a critical review of the literature based on a systematic review of original research studies published between September 2008 and November 2019 that reported on cerebellar TBS. We recovered information from these publications and communication with authors about the stimulation parameters used and the occurrence of adverse events. FINDINGS We identified 61 research articles on interventions of TBS to the cerebellum. These articles described 3176 active sessions of cerebellar TBS in 1203 individuals, including healthy participants and patients with various neurologic conditions, including brain injuries. Some studies used substantial doses (eg, pulse intensity and number of pulses) in short periods. No serious adverse events were reported. The specific number of patients who experienced adverse events was established for 48 studies. The risk of an adverse event in this population (n = 885) was 4.1%. Adverse events consisted mostly of discomfort attributable to involuntary muscle contractions. Authors used a variety of methods for calculating stimulation dosages, ranging from the long-established reference of electromyography of a hand muscle to techniques that atone for some of the differences between cerebrum and cerebellum. IMPLICATIONS No serious adverse events have been reported for cerebellar TBS. There is no substantial evidence of a tolerable maximal-efficacy stimulation dose in humans. There is no assurance of equivalence in the translation of cortical excitability and stimulation intensities from the cerebral cortex to cerebellar regions. Further research for the stimulation dose in cerebellar TBS is warranted, along with consistent report of adverse events. © 2020 Elsevier HS Journals, Inc.
Collapse
Affiliation(s)
- Aura M Hurtado-Puerto
- Laboratory of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Centro de Estudios Cerebrales, Facultad de Ciencias, Universidad del Valle, Cali, Colombia.
| | - Kimberly Nestor
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mark Eldaief
- Laboratory of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Joan A Camprodon
- Laboratory of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
12
|
Transient inhibition of the cerebellum impairs change-detection processes: Cerebellar contributions to sensorimotor integration. Behav Brain Res 2020; 378:112273. [DOI: 10.1016/j.bbr.2019.112273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/09/2019] [Accepted: 10/01/2019] [Indexed: 11/23/2022]
|