1
|
Obianwuna UE, Agbai Kalu N, Wang J, Zhang H, Qi G, Qiu K, Wu S. Recent Trends on Mitigative Effect of Probiotics on Oxidative-Stress-Induced Gut Dysfunction in Broilers under Necrotic Enteritis Challenge: A Review. Antioxidants (Basel) 2023; 12:antiox12040911. [PMID: 37107286 PMCID: PMC10136232 DOI: 10.3390/antiox12040911] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 04/29/2023] Open
Abstract
Gut health includes normal intestinal physiology, complete intestinal epithelial barrier, efficient immune response, sustained inflammatory balance, healthy microbiota, high nutrient absorption efficiency, nutrient metabolism, and energy balance. One of the diseases that causes severe economic losses to farmers is necrotic enteritis, which occurs primarily in the gut and is associated with high mortality rate. Necrotic enteritis (NE) primarily damages the intestinal mucosa, thereby inducing intestinal inflammation and high immune response which diverts nutrients and energy needed for growth to response mediated effects. In the era of antibiotic ban, dietary interventions like microbial therapy (probiotics) to reduce inflammation, paracellular permeability, and promote gut homeostasis may be the best way to reduce broiler production losses. The current review highlights the severity effects of NE; intestinal inflammation, gut lesions, alteration of gut microbiota balance, cell apoptosis, reduced growth performance, and death. These negative effects are consequences of; disrupted intestinal barrier function and villi development, altered expression of tight junction proteins and protein structure, increased translocation of endotoxins and excessive stimulation of proinflammatory cytokines. We further explored the mechanisms by which probiotics mitigate NE challenge and restore the gut integrity of birds under disease stress; synthesis of metabolites and bacteriocins, competitive exclusion of pathogens, upregulation of tight junction proteins and adhesion molecules, increased secretion of intestinal secretory immunoglobulins and enzymes, reduction in pro-inflammatory cytokines and immune response and the increased production of anti-inflammatory cytokines and immune boost via the modulation of the TLR/NF-ĸ pathway. Furthermore, increased beneficial microbes in the gut microbiome improve nutrient utilization, host immunity, and energy metabolism. Probiotics along with biosecurity measures could mitigate the adverse effects of NE in broiler production.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nenna Agbai Kalu
- Department of Animal Science, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Fathima S, Hakeem WGA, Shanmugasundaram R, Selvaraj RK. Necrotic Enteritis in Broiler Chickens: A Review on the Pathogen, Pathogenesis, and Prevention. Microorganisms 2022; 10:1958. [PMID: 36296234 PMCID: PMC9610872 DOI: 10.3390/microorganisms10101958] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Clostridium perfringens type A and C are the primary etiological agents associated with necrotic enteritis (NE) in poultry. The predisposing factors implicated in the incidence of NE changes the physical properties of the gut, immunological status of birds, and disrupt the gut microbial homeostasis, causing an over-proliferation of C. perfringens. The principal virulence factors contributing to the pathogenesis of NE are the α-toxin, β-toxin, and NetB toxin. The immune response to NE in poultry is mediated by the Th1 pathway or cytotoxic T-lymphocytes. C. perfringens type A and C are also pathogenic in humans, and hence are of public health significance. C. perfringens intoxications are the third most common bacterial foodborne disease after Salmonella and Campylobacter. The restrictions on the use of antibiotics led to an increased incidence of NE in poultry. Hence, it is essential to develop alternative strategies to keep the prevalence of NE under check. The control strategies rely principally on the positive modulation of host immune response, nutritional manipulation, and pathogen reduction. Current knowledge on the etiology, pathogenesis, predisposing factors, immune response, effect on the gut microbial homeostasis, and preventative strategies of NE in this post-antibiotic era is addressed in this review.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| | | | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Athens, GA 30605, USA
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Tomczyk-Warunek A, Blicharski T, Muszyński S, Tomaszewska E, Dobrowolski P, Blicharski R, Jarecki J, Arczewska-Włosek A, Świątkiewicz S, Józefiak D. Structural Changes in Trabecular Bone, Cortical Bone and Hyaline Cartilage as Well as Disturbances in Bone Metabolism and Mineralization in an Animal Model of Secondary Osteoporosis in Clostridium perfringens Infection. J Clin Med 2021; 11:205. [PMID: 35011946 PMCID: PMC8746067 DOI: 10.3390/jcm11010205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
There is no information regarding whether changes in the microbiological balance of the gastrointestinal tract as a result of an infection with Clostridium perfringens influence the development of metabolic bone disorders. The experiment was carried out on male broiler chickens divided into two groups: control (n = 10) and experimental (n = 10). The experimental animals were infected with Clostridium perfringens between 17 and 20 days of age. The animals were euthanized at 42 days of age. The structural parameters of the trabecular bone, cortical bone, and hyaline cartilage as well as the mineralization of the bone were determined. The metabolism of the skeletal system was assessed by determining the levels of bone turnover markers, hormones, and minerals in the blood serum. The results confirm that the disturbed composition of the gastrointestinal microflora has an impact on the mineralization and metabolism of bone tissue, leading to the structural changes in cortical bone, trabecular bone, and hyaline cartilage. On the basis of the obtained results, it can be concluded that changes in the microenvironment of the gastrointestinal tract by infection with C. perfringens may have an impact on the earlier development of osteoporosis.
Collapse
Affiliation(s)
- Agnieszka Tomczyk-Warunek
- Chair and Department of Rehabilitation and Orthopaedics, Medical University in Lublin, 20-090 Lublin, Poland; (A.T.-W.); (R.B.); (J.J.)
| | - Tomasz Blicharski
- Chair and Department of Rehabilitation and Orthopaedics, Medical University in Lublin, 20-090 Lublin, Poland; (A.T.-W.); (R.B.); (J.J.)
| | - Siemowit Muszyński
- Department of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland;
| | - Rudolf Blicharski
- Chair and Department of Rehabilitation and Orthopaedics, Medical University in Lublin, 20-090 Lublin, Poland; (A.T.-W.); (R.B.); (J.J.)
| | - Jaromir Jarecki
- Chair and Department of Rehabilitation and Orthopaedics, Medical University in Lublin, 20-090 Lublin, Poland; (A.T.-W.); (R.B.); (J.J.)
| | - Anna Arczewska-Włosek
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland; (A.A.-W.); (S.Ś.)
| | - Sylwester Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland; (A.A.-W.); (S.Ś.)
| | - Damian Józefiak
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland;
| |
Collapse
|
4
|
The Great ESKAPE: Exploring the Crossroads of Bile and Antibiotic Resistance in Bacterial Pathogens. Infect Immun 2020; 88:IAI.00865-19. [PMID: 32661122 DOI: 10.1128/iai.00865-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Throughout the course of infection, many pathogens encounter bactericidal conditions that threaten the viability of the bacteria and impede the establishment of infection. Bile is one of the most innately bactericidal compounds present in humans, functioning to reduce the bacterial burden in the gastrointestinal tract while also aiding in digestion. It is becoming increasingly apparent that pathogens successfully resist the bactericidal conditions of bile, including bacteria that do not normally cause gastrointestinal infections. This review highlights the ability of Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, Enterobacter (ESKAPE), and other enteric pathogens to resist bile and how these interactions can impact the sensitivity of bacteria to various antimicrobial agents. Given that pathogen exposure to bile is an essential component to gastrointestinal transit that cannot be avoided, understanding how bile resistance mechanisms align with antimicrobial resistance is vital to our ability to develop new, successful therapeutics in an age of widespread and increasing antimicrobial resistance.
Collapse
|
5
|
Park M, Sutherland JB, Rafii F. Effects of nano-hydroxyapatite on the formation of biofilms by Streptococcus mutans in two different media. Arch Oral Biol 2019; 107:104484. [PMID: 31382161 DOI: 10.1016/j.archoralbio.2019.104484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/20/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The aim of this study was to examine the effect of nano-hydroxyapatite (nHA) on biofilm formation by Streptococcus mutans, which is actively involved in the initiation of dental caries. DESIGN The effects of nHA on growth and biofilm formation by S. mutans were investigated in two media: a saliva analog medium, basal medium mucin (BMM); and a nutrient-rich medium, brain heart infusion (BHI); in the presence and absence of sucrose. RESULTS Sucrose enhanced the growth of S. mutans in both media. In the presence of sucrose, nHA enhanced bacterial growth and biofilm formation more in BMM medium than in BHI. nHA also affected the transcription of glucosyltransferase (gtf) genes and production of polysaccharide differently in the two media. In BHI medium, the transcription of all three gtf genes, coding for enzymes that synthesize soluble and insoluble glucans from sucrose, was increased more than 3-fold by nHA. However, in BMM medium, only the transcription of gtfB and gtfC, coding for insoluble glucans, was substantially enhanced by nHA. CONCLUSIONS nHA appeared to enhance biofilm formation by increasing glucosyltransferase transcription, which resulted in an increase in production of insoluble glucans. This effect was influenced by the growth conditions.
Collapse
Affiliation(s)
- Miseon Park
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - John B Sutherland
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - Fatemeh Rafii
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA.
| |
Collapse
|
6
|
Emami NK, Calik A, White MB, Young M, Dalloul RA. Necrotic Enteritis in Broiler Chickens: The Role of Tight Junctions and Mucosal Immune Responses in Alleviating the Effect of the Disease. Microorganisms 2019; 7:E231. [PMID: 31370350 PMCID: PMC6723922 DOI: 10.3390/microorganisms7080231] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
Necrotic enteritis (NE) continues to present major challenges to the poultry industry, and the etiologic agent Clostridium perfringens is the fourth leading cause of bacterially-induced food- borne illnesses in the US. This study was designed to evaluate the effects of a probiotic during naturally occurring NE. On day of hatch, 1080 Cobb 500 male broilers were randomly allocated to three groups (12 replicate pens/treatment, 30 birds/pen) including 1) negative control (NC): corn-soybean meal diet; 2) positive control (PC): NC + 20 mg virginiamycin/kg diet (0.450 kg Stafac®20/ton); and 3) NC + PrimaLac (1.36 and 0.91 kg/ton from 1-21 and 22-42 days, respectively). One day (d) post placement, all birds were challenged by a commercial live oocyst coccidia vaccine as a predisposing factor to NE. Body weight and feed intake were measured at the onset of NE (d 8) and end of each feeding phase. On d 8, small intestines of two birds/pen were examined for NE lesions, and jejunum samples from one bird were collected for mRNA gene expression analysis of tight junction proteins, cytokines, and nutrient transporters. Data were analyzed using the Jump (JMP) software and significance between treatments identified by LSD (P < 0.05). Compared to NC, supplementation of probiotic reduced d 1-42 mortality; however, PC was the only group with significantly lower mortality. Despite significantly improved feed conversion ratio (FCR) in PC and probiotic groups during d 1-42, average daily gain was only higher in PC (77.69 g/bird) compared with NC (74.99 g/bird). Furthermore, probiotic and PC groups had significantly reduced lesion scores in the duodenum and jejunum compared to NC. Expression of claudin-3 was higher, while expression of zonula occluden-2 tended (P = 0.06) to be higher in probiotic-supplemented birds compared to NC. Moreover, birds fed the probiotic diet had significantly higher expression of IL-10, IL-17, AMPK-α1, and SGLT1 mRNA compared to NC birds. The expression of PepT1 was higher for the probiotic-supplemented group compared to PC. IFN-γ expression was lower in PC compared to NC, while there was no difference between probiotic and NC. There were no differences in gene expression of sIgA, TNF-α, IL-1β, and IL-22 among treatments. Collectively, these data indicate that in a naturally occurring NE model, supplementation of a probiotic helps to improve FCR and reduce lesions, potentially due to the improvements in mRNA expression of tight junctions, cytokines, and nutrient transporters.
Collapse
Affiliation(s)
- Nima K Emami
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ali Calik
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Turkey
| | - Mallory B White
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mark Young
- Star-Labs/Forage Research, Inc., Clarksdale, 64430 MO, USA
| | - Rami A Dalloul
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|