1
|
Ranabhat G, Subedi D, Karki J, Paudel R, Luitel H, Bhattarai RK. Molecular detection of avian pathogenic Escherichia coli (APEC) in broiler meat from retail meat shop. Heliyon 2024; 10:e35661. [PMID: 39170517 PMCID: PMC11336815 DOI: 10.1016/j.heliyon.2024.e35661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/11/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a major bacterial pathogen responsible for the most widespread form of colibacillosis, resulting in substantial economic losses within the poultry sector and posing a potential public health risk. From July to September 2021, our study investigated the antibiotic resistance pattern of Escherichia coli (E. coli) and the presence of virulence-associated genes (iucD, iutA, iss, and ompT) linked to APEC using 105 broiler meat samples comprising liver, thigh, and breast muscle, in Chitwan, Nepal. E. coli was isolated and identified by culturing samples on MacConkey's agar, Eosin-methylene blue (EMB) agar and performing different biochemical tests. Antibiotic resistance patterns of E. coli were determined by the Kirby-Bauer disc diffusion method. Following the isolation of E. coli, the molecular detection of APEC was performed using conventional polymerase chain reaction (PCR). Out of the 105 samples analyzed, 61 (58.1 %) tested positive for E. coli. In antibiotic susceptibility test (AST), gentamicin and tetracycline exhibited the highest resistance rates, with 90.2 % and 67.2 %, respectively and 29.5 % of the E. coli isolates displayed multidrug-drug resistance. Out of 61 confirmed E. coli isolates, iutA was detected in 47 (77.0 %) samples, iucD in 46 (75.4 %), iss in 53 (86.8 %), and ompT in 39 (63.9 %) samples. This study reports the occurrence of MDR E. coli in meat samples, together with virulence genes associated with APEC which poses a public health threat. Continuous surveillance is vital for monitoring APEC transmission within poultry farms, coupled with efforts to raise awareness of food safety among consumers of broiler meat.
Collapse
Affiliation(s)
- Ganesh Ranabhat
- Faculty of Animal Science, Veterinary Science and Fisheries (FAFV), Agriculture and Forestry University, Bharatpur, Chitwan, Nepal
| | - Deepak Subedi
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Jasmina Karki
- Paklihawa Campus, Institute of Agriculture and Animal Science (IAAS), Tribhuvan University, Rupandehi, Nepal
| | - Roshan Paudel
- Faculty of Animal Science, Veterinary Science and Fisheries (FAFV), Agriculture and Forestry University, Bharatpur, Chitwan, Nepal
| | - Himal Luitel
- Faculty of Animal Science, Veterinary Science and Fisheries (FAFV), Agriculture and Forestry University, Bharatpur, Chitwan, Nepal
| | - Rebanta Kumar Bhattarai
- Faculty of Animal Science, Veterinary Science and Fisheries (FAFV), Agriculture and Forestry University, Bharatpur, Chitwan, Nepal
| |
Collapse
|
2
|
Stearns R, Bowen K, Taylor RL, Moritz J, Matak K, Tou J, Freshour A, Jaczynski J, Boltz T, Li X, Long C, Shen C. Microbial profile of broiler carcasses processed at a university scale mobile poultry processing unit. Poult Sci 2024; 103:103576. [PMID: 38430779 PMCID: PMC10912918 DOI: 10.1016/j.psj.2024.103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Chicken and chicken products have been associated with foodborne pathogens such as Salmonella, Campylobacter, and Escherichia coli (E. coli). Poultry comprises an important segment of the agricultural economy (75 million birds processed as of 2019) in West Virginia (WV). The risk of pathogens on processed chickens has risen with the increased popularity of mobile poultry processing units (MPPUs). This study evaluated the microbial safety of broilers processed in a MPPU in WV. This study assessed aerobic plate counts (APCs), E. coli counts and the presence/absence of Salmonella and Campylobacter on 96 broiler carcasses following each MPPU step of scalding, eviscerating, and chilling. Samples were either chilled in ice water only (W) or ice water with 5 ppm chlorine (CW). The highest number of bacteria recovered from carcasses were APCs (4.21 log10CFU/mL) and E. coli (3.77 log10CFU/mL; P = 0.02). A total reduction of 0.30 (P = 0.10) and 0.63 (P = 0.01) log10CFU/mL for APCs and E. coli, respectively, occurred from chilling carcasses in CW. Overall, results show that E. coli, Salmonella, and Campylobacter were significantly (P < 0.05) reduced from the initial scalding to the chilling step. However, Salmonella frequency doubled (15.63-34.38%) after the evisceration step, indicating that washing carcasses after evisceration may be a critical control point in preventing cross-contamination by Salmonella. Proper chilling is also an important microbial mitigation step in MPPU processing. Results indicate that Campylobacter was more resistant to chilling than Salmonella. Campylobacter was not completely inactivated until carcasses were chilled in CW, whereas W was sufficient to reduce Salmonella on carcasses. The results led to the conclusion that although 5 ppm chlorine (Cl2) achieved more bacterial reductions than water alone, the reductions were not always significant (P > 0.05). Further MPPU studies are needed to verify more effective chilling and processing strategies.
Collapse
Affiliation(s)
- Rebecca Stearns
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Kristina Bowen
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Robert L Taylor
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Joe Moritz
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Kristen Matak
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Janet Tou
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Annette Freshour
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Jacek Jaczynski
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Timothy Boltz
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Xiang Li
- Egg and Poultry Production Safety Research Unit, U.S. National Poultry Research Center, USDA-ARS, Athens, GA 30605 USA
| | - Carly Long
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Cangliang Shen
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
3
|
Langkabel N, Burgard J, Freter S, Fries R, Meemken D, Ellerbroek L. Detection of Extended-Spectrum β-Lactamase (ESBL) E. coli at Different Processing Stages in Three Broiler Abattoirs. Microorganisms 2023; 11:2541. [PMID: 37894199 PMCID: PMC10609597 DOI: 10.3390/microorganisms11102541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The European Food Safety Authority (EFSA) identified extended-spectrum β-lactamase/AmpC β-lactamase (ESBL/AmpC)-producing E. coli as one of the main priority hazards for poultry. Different studies detected ESBL-producing E. coli at broiler fattening farms and in abattoirs, concluding that poultry meat is a potential source of human infection. Broiler breast skin samples taken in three abattoirs with different scalding techniques were examined for ESBL-producing Escherichia (E.) coli and their phylogenetic groups. A total of 307 ESBL-producing E. coli isolates were found, and the abattoir with conventional immersion scalding with thermal treatment of the water had the lowest incidence. Phylogroups D/E and B1 were mostly detected, while phylogroups C, D, and E were not detected. Phylogroup B2 was detected in low proportions. The phylogroups B2 and D are important as they have been associated with urinary tract infections in humans, but were only detected in low proportions at different processing stages in this study. Since the risk for the consumer of being infected via chicken meat with ESBL-producing E. coli and E. coli of highly pathogenic phylogroups cannot be excluded, good kitchen hygiene is of great importance.
Collapse
Affiliation(s)
- Nina Langkabel
- Working Group Meat Hygiene, Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, 14163 Berlin, Germany
| | - Janine Burgard
- Working Group Meat Hygiene, Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Sabrina Freter
- Working Group Meat Hygiene, Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Reinhard Fries
- Working Group Meat Hygiene, Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Diana Meemken
- Working Group Meat Hygiene, Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, 14163 Berlin, Germany
| | | |
Collapse
|
4
|
Correia Carreira G, Projahn M, Langkabel N, Becker E, Käsbohrer A. Modeling of interventions for reducing external Enterobacteriaceae contamination of broiler carcasses during processing. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:1933-1945. [PMID: 36577911 DOI: 10.1111/risa.14079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
This article presents a mathematical model for the Enterobacteriaceae count on the surface of broiler chicken during slaughter and how it may be affected by different processing technologies. The model is based on a model originally developed for Campylobacter and has been adapted for Enterobacteriaceae using a Bayesian updating approach and hitherto unpublished data gathered from German abattoirs. The slaughter process in the model consists of five stages: input, scalding, defeathering, evisceration, washing, and chilling. The impact of various processing technologies along the broiler processing line on the Enterobacteriaceae count on the carcasses' surface has been determined from literature data. The model is implemented in the software R and equipped with a graphical user interface which allows interactively to choose among different processing technologies for each stage along the processing line. Based on the choice of processing technologies the model estimates the Enterobacteriaceae count on the surface of each broiler chicken at each stage of processing. This result is then compared to a so-called baseline model which simulates a processing line with a fixed set of processing technologies. The model calculations showed how even very effective removal of bacteria on the exterior of the carcass in a previous step will be undone by the cross-contamination with leaked feces, if feces contain high concentrations of bacteria.
Collapse
Affiliation(s)
| | - Michaela Projahn
- Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | - Nina Langkabel
- Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Evelyne Becker
- Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | - Annemarie Käsbohrer
- Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
5
|
Assefa A, Dione M, Ilboudo G, Lallogo V, Gemeda BA, Grace D, Knight-Jones TJD. Quantitative analysis of knowledge, attitude and practice of workers in chicken slaughter slabs toward food safety and hygiene in Ouagadougou, Burkina Faso. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.1091209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
IntroductionIn low- and middle-income countries, chicken serves as a cheap source of protein and an income source for many households. It is particularly important in the capital, Ouagadougou, Burkina Faso, where chicken is regularly consumed. However, hygiene standards are very low, posing a significant public health risk.MethodsTo better understand the food safety situation, we conducted a cross-sectional survey of the hygienic practices of 155 randomly selected chicken slaughter outlets and carcass shops with a semi-structured questionnaire.Results and discussionOf the outlets visited, 59% are not licensed, and 63% are not regularly inspected, operating in the dominant, largely unregulated informal sector. More than 80% of the chickens are sourced from village production systems, but around 6% of the birds die during transport. The monetary loss due to chicken death during transportation is around four million USD annually. Market hygiene is poor; 86% of the holding pens have no hard floor and are not washed regularly. Almost all (92%) chickens are slaughtered on bare earth floors; bleeding, plucking, and evisceration are done on a wooden table that is rarely washed. On average, the same scalding water is used for 33 birds, seven scalded at a time. Most respondents (49%) thought that plucking and evisceration were the major cause of contamination of carcasses with foodborne pathogens. Most operators only washed their hands and knives with tap water at the beginning of the slaughtering process. Some shops use refrigerators and freezers to store carcasses before selling. However, they store carcasses with other foods like fish, beef and vegetables, facilitating further cross-contamination. There were rats (26%), cats (39%) and dogs (30%) present at outlets, roaming for food, especially roadside outlets. Training schemes on hygienic food handling practices were favoured by outlets as an approach to improve matters; however, improvements in food safety will be limited without significant upgrades in infrastructure and facilities. Slaughter slabs need a standard house with stable energy, adequate airflow, clean water, toilets, detergents and freezers. Also, they need equipment like knives, tables and dishes made of high-quality, easy-to-clean materials.
Collapse
|
6
|
Assessment of poultry process hygiene and bacterial dynamics along two broiler slaughter lines in Norway. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Laranja DC, Cacciatore FA, Malheiros PDS, Tondo EC. Application of peracetic acid by spray or immersion in chicken carcasses to reduce
cross‐contamination
in the slaughter process. J Food Saf 2022. [DOI: 10.1111/jfs.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Daniela Comparsi Laranja
- Department of Food Science Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA‐UFRGS) Porto Alegre Brazil
| | - Fabíola Ayres Cacciatore
- Department of Food Science Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA‐UFRGS) Porto Alegre Brazil
| | - Patrícia da Silva Malheiros
- Department of Food Science Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA‐UFRGS) Porto Alegre Brazil
| | - Eduardo Cesar Tondo
- Department of Food Science Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA‐UFRGS) Porto Alegre Brazil
| |
Collapse
|
8
|
Li Z, Peng C, Zhang G, Shen Y, Zhang Y, Liu C, Liu M, Wang F. Prevalence and characteristics of multidrug-resistant Proteus mirabilis from broiler farms in Shandong Province, China. Poult Sci 2022; 101:101710. [PMID: 35134599 PMCID: PMC8844651 DOI: 10.1016/j.psj.2022.101710] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 01/15/2023] Open
Abstract
Animal-derived Proteus mirabilis (P. mirabilis) is an important food-borne zoonotic bacillus and widely exists in the broiler-breeding industry. The present study was designed to explore the P. mirabilis prevalence and antimicrobial resistance characteristics in 6 conventional broiler-fattening farms in Shandong Province, China. The overall isolation rate of P. mirabilis was 7.07% (50/707). Antimicrobial resistance was very common in the P. mirabilis isolated from these farms and varied for different antibacterial drugs, with chloramphenicol, ciprofloxacin, and trimethoprim-sulfamethoxazole having the highest resistance rate (98%) and aztreonam the lowest (0%). Multidrug resistance was as high as 100%. The majority of the MDR isolates were resistant to between 9 and 12 of the antibiotics, with these accounting for 76% (38/50) of multidrug resistant strains. These P. mirabilis isolates carried 24 drug-resistance genes in 6 types, with stcM having the highest rate (96%) and cmlA, blaTEM, and qnrC the lowest (2%). Superdrug resistance gene blaNDM-1 was found in 10% (5/50) of isolates from poultry farms in Shandong. All the P. mirabilis isolates carried at least 6 virulence genes, with 100% detection rates of the ireA and hpmA genes. Our study revealed that the P. mirabilis strains isolated in the Shandong area all showed the MDR phenotype and the poultry-derived carbapenem-resistant MDR P. mirabilis strains may pose a potential risk to humans. Surveillance findings presented herein will be conducive to our understanding of the prevalence and characteristics of carbapenem-resistant P. mirabilis strains in Shandong, China.
Collapse
|
9
|
Impact of On-Farm Interventions against CTX-Resistant Escherichia coli on the Contamination of Carcasses before and during an Experimental Slaughter. Antibiotics (Basel) 2021; 10:antibiotics10030228. [PMID: 33668337 PMCID: PMC7996166 DOI: 10.3390/antibiotics10030228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 01/10/2023] Open
Abstract
Cefotaxime (CTX)-resistant Enterobacteriaceae are still an ongoing challenge in human and veterinary health. High prevalence of these resistant bacteria is detected in broiler chickens and the prevention of their dissemination along the production pyramid is of major concern. The impact of certain on-farm interventions on the external bacterial contamination of broiler chickens, as well as their influence on single processing steps and (cross-) contamination, have not yet been evaluated. Therefore, we investigated breast skin swab samples of broiler chickens before and during slaughter at an experimental slaughter facility. Broiler chickens were previously challenged with CTX-resistant Escherichia coli strains in a seeder-bird model and subjected to none (control group (CG)) or four different on-farm interventions: drinking water supplementation based on organic acids (DW), slow growing breed Rowan × Ranger (RR), reduced stocking density (25 kg/sqm) and competitive exclusion with Enterobacteriales strain IHIT36098(CE). Chickens of RR, 25 kg/sqm, and CE showed significant reductions of the external contamination compared to CG. The evaluation of a visual scoring system indicated that wet and dirty broiler chickens are more likely a vehicle for the dissemination of CTX-resistant and total Enterobacteriaceae into the slaughterhouses and contribute to higher rates of (cross-) contamination during processing.
Collapse
|
10
|
Robé C, Daehre K, Merle R, Friese A, Guenther S, Roesler U. Impact of different management measures on the colonization of broiler chickens with ESBL- and pAmpC- producing Escherichia coli in an experimental seeder-bird model. PLoS One 2021; 16:e0245224. [PMID: 33411808 PMCID: PMC7790425 DOI: 10.1371/journal.pone.0245224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/26/2020] [Indexed: 12/20/2022] Open
Abstract
The colonization of broilers with extended-spectrum β-lactamase- (ESBL-) and plasmid-mediated AmpC β-lactamase- (pAmpC-) producing Enterobacteriaceae has been extensively studied. However, only limited data on intervention strategies to reduce the colonization throughout the fattening period are available. To investigate practically relevant management measures for their potential to reduce colonization, a recently published seeder-bird colonization model was used. Groups of 90 broilers (breed Ross 308) were housed in pens under conventional conditions (stocking of 39 kg/m2, no enrichment, water and feed ad libitum). Tested measures were investigated in separate trials and included (I) an increased amount of litter in the pen, (II) the reduction of stocking density to 25 kg/m2, and (III) the use of an alternative broiler breed (Rowan x Ranger). One-fifth of ESBL- and pAmpC- negative broilers (n = 18) per group were orally co-inoculated with two E. coli strains on the third day of the trial (seeder). One CTX-M-15-positive E. coli strain (ST410) and one CMY-2 and mcr-1-positive E. coli strain (ST10) were simultaneously administered in a dosage of 102 cfu. Colonization of all seeders and 28 non-inoculated broilers (sentinel) was assessed via cloacal swabs during the trials and a final necropsy at a target weight of two kilograms (= d 36 (control, I-II), d 47 (III)). None of the applied intervention measures reduced the colonization of the broilers with both the ESBL- and the pAmpC- producing E. coli strains. A strain-dependent reduction of colonization for the ESBL- producing E. coli strain of ST410 by 2 log units was apparent by the reduction of stocking density to 25 kg/m2. Consequently, the tested management measures had a negligible effect on the ESBL- and pAmpC- colonization of broilers. Therefore, intervention strategies should focus on the prevention of ESBL- and pAmpC- colonization, rather than an attempt to reduce an already existing colonization.
Collapse
Affiliation(s)
- Caroline Robé
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
- * E-mail: ,
| | - Katrin Daehre
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Roswitha Merle
- Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| | - Anika Friese
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Guenther
- Institute of Pharmacy, Pharmaceutical Biology, Universität Greifswald, Greifswald, Germany
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
11
|
Alter T, Reich F. Management Strategies for Prevention of Campylobacter Infections Through the Poultry Food Chain: A European Perspective. Curr Top Microbiol Immunol 2021; 431:79-102. [PMID: 33620649 DOI: 10.1007/978-3-030-65481-8_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Numerous studies point out that at present, a complete elimination of Campylobacter species in the poultry food chain is not feasible. Thus, the current aim should be to establish control measures and intervention strategies to minimize the occurrence of Campylobacter spp. in livestock (esp. poultry flocks) and to reduce the quantitative Campylobacter burden along the food chain in animals and subsequently in foods. The most effective measures to mitigate Campylobacter focus on the primary production stage. Nevertheless, measures applied during slaughter and processing complement the general meat hygiene approaches by reducing fecal contamination during slaughtering and processing and as a consequence help to reduce Campylobacter in poultry meat. Such intervention measures at slaughter and processing level would include general hygienic improvements, technological innovations and/or decontamination measures that are applied at single slaughter or processing steps. In particular, approaches that do not focus on a single intervention measure would need to be based on a thorough process of evaluation, and potential combinatory effects have to be modeled and tested. Finally, the education of all stakeholders (including retailers, food handlers and consumers) is required and will help to increase awareness for the presence of foodborne pathogens in raw meat and meat products and can thus aid in the development of the required good kitchen hygiene.
Collapse
Affiliation(s)
- Thomas Alter
- Center for Veterinary Public Health, Institute of Food Safety and Food Hygiene, Free University Berlin, Koenigsweg 69, Berlin, 14163, Germany.
| | - Felix Reich
- German Federal Institute for Risk Assessment, Max-Dohrn-Strasse 8-10, Berlin, 10589, Germany
| |
Collapse
|
12
|
Efficacy of Live Attenuated Vaccine and Commercially Available Lectin Against Avian Pathogenic E. coli Infection in Broiler Chickens. Vet Sci 2020; 7:vetsci7020065. [PMID: 32414109 PMCID: PMC7355798 DOI: 10.3390/vetsci7020065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
In this study, the protective efficacy of an E. coli live attenuated vaccine was compared to the preventive administration of lectin preparation before the challenge. Two hundred broiler chicks were divided into eight equal groups. The first group was used as a negative control group. Three groups were vaccinated at day 1 with the avian colibacillosis live vaccine of which one group served as a vaccinated nonchallenged group. Another two groups were treated with lectin product (0.5 mL/L drinking water) for three days before the challenge. The last two groups served as challenge control for either E. coli O78 or O125 strains. The challenge was conducted at three weeks of age with either homologous O78 or heterologous O125E. coli strains, using 0.5 mL/bird of each avian pathogenic E. coli (APEC) strain (~108 colony forming units “CFU”/mL)/subcutaneously. The bodyweight and feed conversion ratios (FCR) were calculated for four weeks. Clinical signs and gross and histopathological lesions were scored at two and seven days post inoculation (dpi). The heart and liver of euthanized chickens at 2 dpi were removed aseptically and homogenized to evaluate pathogenic E. coli colonization. Results showed that live avian colibacillosis vaccine reduced mortalities and APEC colonization in the homologous challenge group but not in the heterologous challenge group. Lectin-treated groups showed 20% and 16% mortality after challenge with E. coli O78 and O125, respectively, and both groups showed performance parameters, clinical signs, and histopathological lesion scores comparable to the negative control group, with variable E. coli colonization of heart and liver. The study demonstrated the efficacy of live attenuated avian colibacillosis vaccine against homologous but not heterologous APEC challenge in broiler chickens. The lectin-containing products can be used as a preventive medication to reduce the clinical impacts of colibacillosis regardless of the challenge strain. Standardization of the evaluation parameters for APEC vaccines is recommended.
Collapse
|
13
|
Antimicrobial Resistance, Genetic Diversity and Multilocus Sequence Typing of Escherichia coli from Humans, Retail Chicken and Ground Beef in Egypt. Pathogens 2020; 9:pathogens9050357. [PMID: 32397188 PMCID: PMC7281645 DOI: 10.3390/pathogens9050357] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023] Open
Abstract
Contamination of retail foods with foodborne pathogens, particularly the antimicrobial resistant ones, poses a persistent threat to human health. There is a dearth of information about the overlapping Escherichia coli (E. coli) lineages circulating among retail foods and humans in Egypt. This study aimed to determine the clonal diversity of 120 E. coli isolates from diarrheic patients (n = 32), retail chicken carcasses (n = 61) and ground beef (n = 27) from Mansoura, Egypt using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Simpson’s index of diversity was calculated to compare the results of both typing methods. Antimicrobial resistance phenotypes, genotypes and phylogrouping of the isolates were also determined. Higher frequencies of antimicrobial resistance were found among chicken isolates compared to beef and human isolates; regardless of isolate source, the predominant antimicrobial resistances were found against ampicillin (87/120, 72.5%), tetracycline and sulfisoxazole (82/120, 68.3%, each), and streptomycin (79/120, 65.8%). None of the isolates displayed resistance to meropenem. The prevalent genes detected were tetA (64.2%), blaTEM (62.5%), sul1 (56.7%), floR (53.3%), sul2 (50%), strB (48.3%) and strA (47.5%) corresponding with resistance phenotypes. Alarmingly, blaCTX was detected in 63.9% (39/61) of chicken isolates. The majority of E. coli isolates from humans (90.6%), beef (81.5%) and chicken (70.5%) belonged to commensal phylogroups (A, B1, C). Using PFGE analysis, 16 out of 24 clusters (66.7%) contained isolates from different sources at a similarity level ≥75%. MLST results assigned E. coli isolates into 25, 19 and 13 sequence types (STs) from chicken, human and beef isolates, respectively. Six shared STs were identified including ST1011, ST156, ST48, ST224 (chicken and beef), ST10 (human and chicken) and ST226 (human and beef). Simpson’s index of diversity was higher for MLST (0.98) than PFGE (0.94). In conclusion, the existence of common genetic determinants among isolates from retail foods and humans in Egypt as well as the circulation of shared STs indicates a possible epidemiological link with potential zoonotic hazards.
Collapse
|
14
|
Collineau L, Chapman B, Bao X, Sivapathasundaram B, Carson CA, Fazil A, Reid-Smith RJ, Smith BA. A farm-to-fork quantitative risk assessment model for Salmonella Heidelberg resistant to third-generation cephalosporins in broiler chickens in Canada. Int J Food Microbiol 2020; 330:108559. [PMID: 32599476 DOI: 10.1016/j.ijfoodmicro.2020.108559] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/18/2019] [Accepted: 02/09/2020] [Indexed: 12/27/2022]
Abstract
Salmonella Heidelberg resistant to ceftiofur (a third-generation cephalosporin antimicrobial agent) in broiler chicken products pose a risk to public health in Canada. The objective of this study was to assess the extent of that risk and to evaluate the effect of intervention measures along the agri-food chain. A stochastic farm-to-fork quantitative microbial risk assessment model was developed following the Codex Alimentarius Guidelines for Risk Analysis of Foodborne Antimicrobial Resistance. Different scenarios were analyzed to assess the individual relative effects of 18 possible interventions in comparison to a baseline scenario. The baseline scenario represented the first year of on-farm antimicrobial use surveillance in the Canadian broiler industry and the year before an industry-imposed ban on the preventive use of antimicrobials of very high importance to human health (2013), where 31.3% of broiler flocks consisted of birds to which ceftiofur was administered. The baseline scenario predicted an average probability of illness of 1.1 per 100,000 servings (SE: 0.064 per 100,000), corresponding to an average of 22,000 human infections (SE: 1900) with ceftiofur-resistant S. Heidelberg per year, which is likely an overestimation. This risk was reduced by 90% or 20% when two separate scenarios designed to capture the effect of withdrawing preventive ceftiofur use from poultry production were simulated using different approaches; data used for the former scenario were confounded by other potential concomitant control measures (e.g. Salmonella vaccination programme), so the true effect likely lies somewhere between the two estimates. A theoretical 'worst case' scenario where all flocks had birds exposed to ceftiofur increased the risk by 107%. A 50% reduction in the probability of human prior exposure to antimicrobials, which has a selective and competitive effect for Salmonella spp. following ingestion of contaminated products, reduced the risk by 65%. Other promising measures that could be considered for further risk management included improved cleaning and disinfection between broiler flocks on farm (risk reduction by 26%), exclusive use of air chilling (risk reduction by 34%), and the improvement of meat storage and preparation conditions, e.g., no temperature abuse at retail (risk reduction by 88%). These findings showed the importance of a structured approach to assessing and potentially implementing effective interventions to reduce the risk associated with ceftiofur-resistant S. Heidelberg at different steps along the agri-food chain. Major data gaps included information on concentrations of resistant bacteria, cross contamination at processing and how ceftiofur-resistant S. Heidelberg behave in comparison with susceptible ones, e.g., in terms of growth and survival ability, as well as pathogenicity and virulence.
Collapse
Affiliation(s)
- Lucie Collineau
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Brennan Chapman
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada; Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Xu Bao
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Branavan Sivapathasundaram
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Carolee A Carson
- Food-Borne Disease and Antimicrobial Resistance Surveillance Division, Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON, Canada
| | - Aamir Fazil
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Richard J Reid-Smith
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada; Food-Borne Disease and Antimicrobial Resistance Surveillance Division, Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON, Canada
| | - Ben A Smith
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada.
| |
Collapse
|