1
|
He S, Deng H, Li P, Hu J, Yang Y, Xu Z, Liu S, Guo W, Guo Q. Arthritic Microenvironment-Dictated Fate Decisions for Stem Cells in Cartilage Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207715. [PMID: 37518822 PMCID: PMC10520688 DOI: 10.1002/advs.202207715] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/05/2023] [Indexed: 08/01/2023]
Abstract
The microenvironment and stem cell fate guidance of post-traumatic articular cartilage regeneration is primarily the focus of cartilage tissue engineering. In articular cartilage, stem cells are characterized by overlapping lineages and uneven effectiveness. Within the first 12 weeks after trauma, the articular inflammatory microenvironment (AIME) plays a decisive role in determining the fate of stem cells and cartilage. The development of fibrocartilage and osteophyte hyperplasia is an adverse outcome of chronic inflammation, which results from an imbalance in the AIME during the cartilage tissue repair process. In this review, the sources for the different types of stem cells and their fate are summarized. The main pathophysiological events that occur within the AIME as well as their protagonists are also discussed. Additionally, regulatory strategies that may guide the fate of stem cells within the AIME are proposed. Finally, strategies that provide insight into AIME pathophysiology are discussed and the design of new materials that match the post-traumatic progress of AIME pathophysiology in a spatial and temporal manner is guided. Thus, by regulating an appropriately modified inflammatory microenvironment, efficient stem cell-mediated tissue repair may be achieved.
Collapse
Affiliation(s)
- Songlin He
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Haotian Deng
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Peiqi Li
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Jingjing Hu
- Department of GastroenterologyInstitute of GeriatricsChinese PLA General HospitalBeijing100853China
| | - Yongkang Yang
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Ziheng Xu
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Shuyun Liu
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Weimin Guo
- Department of Orthopaedic SurgeryGuangdong Provincial Key Laboratory of Orthopedics and TraumatologyFirst Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510080China
| | - Quanyi Guo
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| |
Collapse
|
2
|
Moretti L, Bizzoca D, Geronimo A, Abbaticchio AM, Moretti FL, Carlet A, Fischetti F, Moretti B. Targeting Adenosine Signalling in Knee Chondropathy: The Combined Action of Polydeoxyribonucleotide and Pulsed Electromagnetic Fields: A Current Concept Review. Int J Mol Sci 2023; 24:10090. [PMID: 37373237 PMCID: PMC10298276 DOI: 10.3390/ijms241210090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Chondropathy of the knee is one of the most frequent degenerative cartilage pathologies with advancing age. Scientific research has, in recent years, advanced new therapies that target adenosine A2 receptors, which play a significant role in human health against many disease states by activating different protective effects against cell sufferance and damage. Among these, it has been observed that intra-articular injections of polydeoxyribonucleotides (PDRN) and Pulsed Electromagnetic Fields (PEMF) can stimulate the adenosine signal, with significant regenerative and healing effects. This review aims to depict the role and therapeutic modulation of A2A receptors in knee chondropathy. Sixty articles aimed at providing data for our study were included in this review. The present paper highlights how intra-articular injections of PDRN create beneficial effects by reducing pain and improving functional clinical scores, thanks to their anti-inflammatory action and the important healing and regenerating power of the stimulation of cell growth, production of collagen, and the extracellular matrix. PEMF therapy is a valid option in the conservative treatment of different articular pathologies, including early OA, patellofemoral pain syndrome, spontaneous osteonecrosis of the knee (SONK), and in athletes. PEMF could also be used as a supporting therapy after an arthroscopic knee procedure total knee arthroplasty to reduce the post-operative inflammatory state. The proposal of new therapeutic approaches capable of targeting the adenosine signal, such as the intra-articular injection of PDRN and the use of PEMF, has shown excellent beneficial results compared to conventional treatments. These are presented as an extra weapon in the fight against knee chondropathy.
Collapse
Affiliation(s)
- Lorenzo Moretti
- Orthopaedics Unit—UOSD Vertebral Surgery, AOU Consorziale Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Davide Bizzoca
- Orthopaedics Unit—UOSD Vertebral Surgery, AOU Consorziale Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy;
- Ph.D. Course in Public Health, Clinical Medicine and Oncology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Alessandro Geronimo
- Orthopaedics Unit, DiBraiN, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | | | - Francesco Luca Moretti
- National Centre for Chemicals, Cosmetic Products and Consumer Protection, National Institute of Health, 00161 Rome, Italy
| | - Arianna Carlet
- Orthopaedics Unit, DiBraiN, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Francesco Fischetti
- Departement DiBraiN, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Biagio Moretti
- Orthopaedics Unit, DiBraiN, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
3
|
Ranmuthu CKI, Ranmuthu CDS, Wijewardena CK, Seah MKT, Khan WS. Evaluating the Effect of Hypoxia on Human Adult Mesenchymal Stromal Cell Chondrogenesis In Vitro : A Systematic Review. Int J Mol Sci 2022; 23:ijms232315210. [PMID: 36499531 PMCID: PMC9741425 DOI: 10.3390/ijms232315210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Human adult mesenchymal stromal cells (MSCs) from a variety of sources may be used to repair defects in articular cartilage by inducing them into chondrogenic differentiation. The conditions in which optimal chondrogenic differentiation takes place are an area of interest in the field of tissue engineering. Chondrocytes exist in vivo in a normally hypoxic environment and thus it has been suggested that exposing MSCs to hypoxia may also contribute to a beneficial effect on their differentiation. There are two main stages in which MSCs can be exposed to hypoxia, the expansion phase when cells are cultured, and the differentiation phase when cells are induced with a chondrogenic medium. This systematic review sought to explore the effect of hypoxia at these two stages on human adult MSC chondrogenesis in vitro. A literature search was performed on PubMed, EMBASE, Medline via Ovid, and Cochrane, and 24 studies were ultimately included. The majority of these studies showed that hypoxia during the expansion phase or the differentiation phase enhances at least some markers of chondrogenic differentiation in adult MSCs. These results were not always demonstrated at the protein level and there were also conflicting reports. Studies evaluating continuous exposure to hypoxia during the expansion and differentiation phases also had mixed results. These inconsistent results can be explained by the heterogeneity of studies, including factors such as different sources of MSCs used, donor variability, level of hypoxia used in each study, time exposed to hypoxia, and differences in culture methodology.
Collapse
|
4
|
Kasamkattil J, Gryadunova A, Martin I, Barbero A, Schären S, Krupkova O, Mehrkens A. Spheroid-Based Tissue Engineering Strategies for Regeneration of the Intervertebral Disc. Int J Mol Sci 2022; 23:2530. [PMID: 35269672 PMCID: PMC8910276 DOI: 10.3390/ijms23052530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Degenerative disc disease, a painful pathology of the intervertebral disc (IVD), often causes disability and reduces quality of life. Although regenerative cell-based strategies have shown promise in clinical trials, none have been widely adopted clinically. Recent developments demonstrated that spheroid-based approaches might help overcome challenges associated with cell-based IVD therapies. Spheroids are three-dimensional multicellular aggregates with architecture that enables the cells to differentiate and synthesize endogenous ECM, promotes cell-ECM interactions, enhances adhesion, and protects cells from harsh conditions. Spheroids could be applied in the IVD both in scaffold-free and scaffold-based configurations, possibly providing advantages over cell suspensions. This review highlights areas of future research in spheroid-based regeneration of nucleus pulposus (NP) and annulus fibrosus (AF). We also discuss cell sources and methods for spheroid fabrication and characterization, mechanisms related to spheroid fusion, as well as enhancement of spheroid performance in the context of the IVD microenvironment.
Collapse
Affiliation(s)
- Jesil Kasamkattil
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| | - Anna Gryadunova
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| | - Olga Krupkova
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
- Lepage Research Institute, University of Prešov, 17. Novembra 1, 081 16 Prešov, Slovakia
| | - Arne Mehrkens
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| |
Collapse
|
5
|
Hwang JJ, Choi J, Rim YA, Nam Y, Ju JH. Application of Induced Pluripotent Stem Cells for Disease Modeling and 3D Model Construction: Focus on Osteoarthritis. Cells 2021; 10:cells10113032. [PMID: 34831254 PMCID: PMC8622662 DOI: 10.3390/cells10113032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Since their discovery in 2006, induced pluripotent stem cells (iPSCs) have shown promising potential, specifically because of their accessibility and plasticity. Hence, the clinical applicability of iPSCs was investigated in various fields of research. However, only a few iPSC studies pertaining to osteoarthritis (OA) have been performed so far, despite the high prevalence rate of degenerative joint disease. In this review, we discuss some of the most recent applications of iPSCs in disease modeling and the construction of 3D models in various fields, specifically focusing on osteoarthritis and OA-related conditions. Notably, we comprehensively reviewed the successful results of iPSC-derived disease models in recapitulating OA phenotypes for both OA and early-onset OA to encompass their broad etiology. Moreover, the latest publications with protocols that have used iPSCs to construct 3D models in recapitulating various conditions, particularly the OA environment, were further discussed. With the overall optimistic results seen in both fields, iPSCs are expected to be more widely used for OA disease modeling and 3D model construction, which could further expand OA drug screening, risk assessment, and therapeutic capabilities.
Collapse
Affiliation(s)
- Joel Jihwan Hwang
- College of Public Health and Social Justice, Saint Louis University, St. Louis, MO 63103, USA;
| | - Jinhyeok Choi
- YiPSCELL, Inc., 39 Banpo-daero, Seocho-gu, Seoul 06579, Korea; (J.C.); (Y.N.)
| | - Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Yoojun Nam
- YiPSCELL, Inc., 39 Banpo-daero, Seocho-gu, Seoul 06579, Korea; (J.C.); (Y.N.)
| | - Ji Hyeon Ju
- YiPSCELL, Inc., 39 Banpo-daero, Seocho-gu, Seoul 06579, Korea; (J.C.); (Y.N.)
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Division of Rheumatology, Department of Internal Medicine, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul St. Mary’s Hospital, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
6
|
Moretti L, Bizzoca D, Giancaspro GA, Cassano GD, Moretti F, Setti S, Moretti B. Biophysical Stimulation in Athletes' Joint Degeneration: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111206. [PMID: 34833424 PMCID: PMC8619315 DOI: 10.3390/medicina57111206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease and the main cause of pain and disability in elderly people. OA currently represents a significant social health problem, since it affects 250 million individuals worldwide, mainly adults aged over 65. Although OA is a multifactorial disease, depending on both genetic and environmental factors, it is reported that joint degeneration has a higher prevalence in former athletes. Repetitive impact and loading, joint overuse and recurrent injuries followed by a rapid return to the sport might explain athletes' predisposition to joint articular degeneration. In recent years, however, big efforts have been made to improve the prevention and management of sports injuries and to speed up the athletes' return-to-sport. Biophysics is the study of biological processes and systems using physics-based methods or based on physical principles. Clinical biophysics has recently evolved as a medical branch that investigates the relationship between the human body and non-ionizing physical energy. A physical stimulus triggers a biological response by regulating specific intracellular pathways, thus acting as a drug. Preclinical and clinical trials have shown positive effects of biophysical stimulation on articular cartilage, subchondral bone and synovia. This review aims to assess the role of pulsed electromagnetic fields (PEMFs) and extracorporeal shockwave therapy (ESWT) in the prevention and treatment of joint degeneration in athletes.
Collapse
Affiliation(s)
- Lorenzo Moretti
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari “Aldo Moro”, AOU Consorziale Policlinico, 70124 Bari, Italy; (L.M.); (G.A.G.); (G.D.C.); (B.M.)
| | - Davide Bizzoca
- PhD. Course in Public Health, Clinical Medicine and Oncology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
- Correspondence:
| | - Giovanni Angelo Giancaspro
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari “Aldo Moro”, AOU Consorziale Policlinico, 70124 Bari, Italy; (L.M.); (G.A.G.); (G.D.C.); (B.M.)
| | - Giuseppe Danilo Cassano
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari “Aldo Moro”, AOU Consorziale Policlinico, 70124 Bari, Italy; (L.M.); (G.A.G.); (G.D.C.); (B.M.)
| | - Francesco Moretti
- National Center for Chemicals, Cosmetic Products and Consumer Protection, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Stefania Setti
- IGEA Spa-Clinical Biophysics, via Parmenide, 10/A, 41012 Carpi (Mo), Italy;
| | - Biagio Moretti
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari “Aldo Moro”, AOU Consorziale Policlinico, 70124 Bari, Italy; (L.M.); (G.A.G.); (G.D.C.); (B.M.)
| |
Collapse
|
7
|
Huang Y, Fan H, Gong X, Yang L, Wang F. Scaffold With Natural Calcified Cartilage Zone for Osteochondral Defect Repair in Minipigs. Am J Sports Med 2021; 49:1883-1891. [PMID: 33961510 DOI: 10.1177/03635465211007139] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Long-term outcomes of current clinical interventions for osteochondral defect are less than satisfactory. One possible reason is an ignorance of the interface structure between cartilage and subchondral bone, the calcified cartilage zone (CCZ). However, the importance of natural CCZ in osteochondral defects has not been directly described. PURPOSE To explore the feasibility of fabricating trilayer scaffold containing natural CCZ for osteochondral defects and the role of CCZ in the repair process. STUDY DESIGN Controlled laboratory study. METHODS The scaffold was prepared by cross-linking lyophilized type II collagen sponge and acellular normal pig subchondral bone with or without natural CCZ. Autologous bone marrow stem cells (BMSCs) of minipig were mixed with type II collagen gel and injected into the cartilage layer of the scaffold before operation. Thirty minipigs were randomly divided into CCZ (n = 10), non-CCZ (n = 10), and blank control (n = 10) groups. An 8 mm-diameter full-thickness osteochondral defect was created on the trochlear surface, and scaffold containing BMSCs was transplanted into the defect according to grouping requirements. At 12 and 24 weeks postoperatively, specimens were assessed by macroscopic observation, magnetic resonance imaging examination, and histological observations (hematoxylin and eosin, Safranin O-fast green, type II collagen immunohistochemical, and Sirius red staining). Semiquantitative cartilage repair scoring was conducted using the MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) system and the O'Driscoll repaired cartilage value system. RESULTS The defects in the blank control and non-CCZ groups were filled with fibrous tissue, while the cartilage layer of the CCZ group was mainly repaired by hyaline cartilage at 24 weeks postoperatively. The superior repair outcome of the CCZ group was confirmed by MOCART and O'Driscoll score. CONCLUSION The trilayer scaffold containing natural CCZ obtained the best repair effect compared with the non-CCZ scaffold and the blank control, indicating the importance of the CCZ in osteochondral tissue engineering. CLINICAL RELEVANCE This study demonstrates the necessity to reconstruct CCZ in clinical osteochondral defect repair and provides a possible strategy for osteochondral tissue engineering.
Collapse
Affiliation(s)
- Yang Huang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huaquan Fan
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fuyou Wang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|