1
|
Elhadef K, Chaari M, Akermi S, Ennouri K, Ben Hlima H, Fourati M, Chakchouk Mtibaa A, Ennouri M, Sarkar T, Shariati MA, Gökşen G, Pateiro M, Mellouli L, Lorenzo JM, Smaoui S. Gelatin-sodium alginate packaging film with date pits extract: An eco-friendly packaging for extending raw minced beef shelf life. Meat Sci 2024; 207:109371. [PMID: 37898014 DOI: 10.1016/j.meatsci.2023.109371] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/07/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Gelatin-sodium alginate-based active packaging films were formulated by including date pits extracts (DPE), as bioactive compound, in raw minced beef meat packaging. The DPE effects at 0.37, 0.75 and 1.5% (w/w, DPE/ gelatin-sodium alginate) on physical, optical, antioxidant and antibacterial properties of established films were assessed. Findings showed that film lightness decreased with the incorporation of DPE. Physical, antioxidant and anti-food-borne pathogens capacities were enhanced by increasing DPE concentration in the films. For 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), the films with 1.5% DPE had the greatest levels (94 and 88%, respectively). DPE films (1.5%) also exhibited the highest anti-Listeria moncytogenes activity, with an inhibition zone of 25 mm. Moreover, during 14 days at 4 °C, the bio-preservative impact of gelatin-sodium alginate film impregnated with DPE at three levels on microbial, chemical, and sensory characteristics of meat beef samples was evaluated. By the end of the storage, DPE at 1.5% enhanced the instrumental color, delayed chemical oxidation and improved sensory traits. By chemometric techniques (principal component analysis (PCA) and heat maps), all data allowed to obtain helpful information by segregating all the samples at each storage time. PCA and heat maps could connect oxidative chemical changes, instrumental color parameters, and microbiological properties to sensory attributes. These data offer an approach to well interpreting the sensory quality and how they are affected by chemical and microbiological changes in the studied meat samples. Our findings indicated the potential of the gelatin-sodium alginate film incorporated with DPE for enhancing meat safety and quality.
Collapse
Affiliation(s)
- Khaoula Elhadef
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, 3018 Sfax, Tunisia
| | - Moufida Chaari
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, 3018 Sfax, Tunisia
| | - Sarra Akermi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, 3018 Sfax, Tunisia
| | - Karim Ennouri
- Olive Tree Institute, University of Sfax, 1087 Sfax, Tunisia
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Mariam Fourati
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, 3018 Sfax, Tunisia
| | - Ahlem Chakchouk Mtibaa
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, 3018 Sfax, Tunisia
| | - Monia Ennouri
- Olive Tree Institute, University of Sfax, 1087 Sfax, Tunisia; Valuation, Security and Food Analysis Laboratory, National School of Engineers of Sfax, University of Sfax, 3038 Sfax,Tunisia
| | - Tanmay Sarkar
- Department of Food Processing Technology, Government of West Bengal, Malda Polytechnic, Bengal State Council of Technical Education, Malda 732102, West Bengal, India
| | - Mohammad Ali Shariati
- Semey Branch of Kazakh Research Institute of Processing and Food Industry, 050060 Almaty, Kazakhstan
| | - Gülden Gökşen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain.
| | - Lotfi Mellouli
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, 3018 Sfax, Tunisia
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Area de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, 3018 Sfax, Tunisia.
| |
Collapse
|
2
|
Sun Y, Zheng Z, Wang Y, Yang B, Wang J, Mu W. PLA composites reinforced with rice residues or glass fiber—a review of mechanical properties, thermal properties, and biodegradation properties. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Evaluating the Performance of 3D-Printed PLA Reinforced with Date Pit Particles for Its Suitability as an Acetabular Liner in Artificial Hip Joints. Polymers (Basel) 2022; 14:polym14163321. [PMID: 36015578 PMCID: PMC9416500 DOI: 10.3390/polym14163321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Off-the-shelf hip joints are considered essential parts in rehabilitation medicine that can help the disabled. However, the failure of the materials used in such joints can cause individual discomfort. In support of the various motor conditions of the influenced individuals, the aim of the current research is to develop a new composite that can be used as an acetabular liner inside the hip joint. Polylactic acid (PLA) can provide the advantage of design flexibility owing to its well-known applicability as a 3D printed material. However, using PLA as an acetabular liner is subject to limitations concerning mechanical properties. We developed a complete production process of a natural filler, i.e., date pits. Then, the PLA and date pit particles were extruded for homogenous mixing, producing a composite filament that can be used in 3D printing. Date pit particles with loading fractions of 0, 2, 4, 6, 8, and 10 wt.% are dispersed in the PLA. The thermal, physical, and mechanical properties of the PLA–date pit composites were estimated experimentally. The incorporation of date pit particles into PLA enhanced the compressive strength and stiffness but resulted in a reduction in the elongation and toughness. A finite element model (FEM) for hip joints was constructed, and the contact stresses on the surface of the acetabular liner were evaluated. The FEM results showed an enhancement in the composite load carrying capacity, in agreement with the experimental results.
Collapse
|
4
|
Thompson SA, Williams RO. Specific mechanical energy - An essential parameter in the processing of amorphous solid dispersions. Adv Drug Deliv Rev 2021; 173:374-393. [PMID: 33781785 DOI: 10.1016/j.addr.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Specific mechanical energy (SME) is a frequently overlooked but essential parameter of hot-melt extrusion (HME). It can determine whether an amorphous solid dispersion (ASD) can be successfully processed. A minimum combination of thermal input and SME is required to convert a crystalline active pharmaceutical product (API) into its amorphous form. A maximum combination is allowed before it or the carrier polymer chemically degrades. This has important implications on design space. SME input during HME provides information on the totality of the effect of various independent processing parameters such as screw speed, feed rate, and complex viscosity. If only these independent processing parameters are considered separately instead of SME, then important information would be lost regarding the interaction of these parameters and their ability to affect ASD formulation. A complete understanding of the HME process requires an analysis of SME. This paper provides a review of SME use in the pharmaceutical processing of ASDs, the importance of SME in terms of a variety of formulation qualities, and novel future uses of SME. Theoretical background is discussed, along with the relative importance of thermal and mechanical input on various nonsolvent ASD processing methods.
Collapse
|
5
|
Sánchez-Rodríguez C, Avilés MD, Pamies R, Carrión-Vilches FJ, Sanes J, Bermúdez MD. Extruded PLA Nanocomposites Modified by Graphene Oxide and Ionic Liquid. Polymers (Basel) 2021; 13:polym13040655. [PMID: 33671778 PMCID: PMC7926343 DOI: 10.3390/polym13040655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/14/2023] Open
Abstract
Polylactic acid (PLA)-based nanocomposites were prepared by twin-screw extrusion. Graphene oxide (GO) and an ionic liquid (IL) were used as additives separately and simultaneously. The characterization of the samples was carried out by means of Fourier transform infrared (FT-IR) and Raman spectroscopies, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The viscoelastic behavior was determined using dynamic mechanical analysis (DMA) and rheological measurements. IL acted as internal lubricant increasing the mobility of PLA chains in the solid and rubbery states; however, the effect was less dominant when the composites were melted. When GO and IL were included, the viscosity of the nanocomposites at high temperatures presented a quasi-Newtonian behavior and, therefore, the processability of PLA was highly improved.
Collapse
|
6
|
Nedelcu D, Mazurchevici SN, Popa RI, Lohan NM, Maldonado-Cortés D, Carausu C. Tribological and Dynamical Mechanical Behavior of Prototyped PLA-Based Polymers. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3615. [PMID: 32824229 PMCID: PMC7475983 DOI: 10.3390/ma13163615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 11/17/2022]
Abstract
It is essential to combine current state-of-the-art technologies such as additive manufacturing with current ecological needs. Due to the increasing demand for non-toxic biodegradable materials and products, human society has been searching for new materials. Consequently, it is compulsory to identify the qualities of these materials and their behavior when subjected to various external factors, to find their optimal solutions for application in various fields. This paper refers to the biodegradable Polylactic acid (PLA)-based filament (commercially known as Extrudr BDP (Biodegradable Plastic) Flax) compared with the biodegradable composite material PLA-lignin filament whose constituent's trade name is Arboblend V2 Nature as a lignin base material and reinforcement with Extrudr BDP Pearl, a PLA based polymer, 3D printed by Fused Deposition Modeling technology. Certain mechanical properties (tensile strength, bending strength and DMA-Dynamic Mechanical Analysis) were also determined. The tribology behavior (friction coefficient and wear), the structure and the chemical composition of the biodegradable materials were investigated by SEM-Scanning Electron Microscopy, EDX-Energy Dispersive X-Ray Analysis, XRD-X-Ray Diffraction Analysis, FTIR-Fourier Transform Infrared Spectrometer and TGA-Thermogravimetric Analysis. The paper also refers to the influence of technological parameters on the 3D printed filaments made of Extrudr BDP Flax and the optimization those of technological parameters. The thermal behavior during the heating of the sample was analyzed by Differential scanning calorimetry (DSC). As a result of the carried-out research, we intend to recommend these biodegradable materials as possible substituents for plastics in as many fields of activity as possible.
Collapse
Affiliation(s)
- Dumitru Nedelcu
- Department of Machine Manufacturing Technology, “Gheorghe Asachi” Technical University of Iasi, Str. Prof. Dr. Doc. Dumitru Mangeron, No. 59A, 700050 Iasi, Romania; (S.-N.M.); (R.-I.P.); (C.C.)
- Academy of Romanian Scientists, Str. Ilfov, No. 3, Sector 5, 060274 Bucharest, Romania
| | - Simona-Nicoleta Mazurchevici
- Department of Machine Manufacturing Technology, “Gheorghe Asachi” Technical University of Iasi, Str. Prof. Dr. Doc. Dumitru Mangeron, No. 59A, 700050 Iasi, Romania; (S.-N.M.); (R.-I.P.); (C.C.)
| | - Ramona-Iuliana Popa
- Department of Machine Manufacturing Technology, “Gheorghe Asachi” Technical University of Iasi, Str. Prof. Dr. Doc. Dumitru Mangeron, No. 59A, 700050 Iasi, Romania; (S.-N.M.); (R.-I.P.); (C.C.)
| | - Nicoleta-Monica Lohan
- Department of Materials Engineering and Industrial Safety, “Gheorghe Asachi” Technical University of Iasi, Str. Prof. Dr. Doc. Dumitru Mangeron, No. 71A, 700050 Iasi, Romania;
| | | | - Constantin Carausu
- Department of Machine Manufacturing Technology, “Gheorghe Asachi” Technical University of Iasi, Str. Prof. Dr. Doc. Dumitru Mangeron, No. 59A, 700050 Iasi, Romania; (S.-N.M.); (R.-I.P.); (C.C.)
| |
Collapse
|
7
|
Abstract
Hydrophobic cellulose/SiO2 composites were prepared. Resultant hydrophobic cellulose/SiO2 composites were melt mixed with PLA using a twin-screw extruder to obtain 10 wt% masterbatch. Again, 10 wt% masterbatch was melt mixed with virgin PLA, resulting in PLA containing hydrophobic cellulose/SiO2 at various contents (1 wt%, 3 wt%, and 5 wt%) using a twin-screw extruder (barrel zone temperature: 150/160/170/180/190°C (die zone)). Injection-molded samples were prepared for mechanical properties evaluation. Results showed that poor mechanical properties found at low percent loadings were associated with a significant depolymerization of masterbatch composition due to twice thermal treatments. Note that 10 wt% masterbatch was subjected to injection molding straight away in a one-step process. Results showed that 10 wt% hydrophobic cellulose/SiO2/PLA composites exhibited mechanical properties equivalent to neat PLA. Importantly, the addition of hydrophobic cellulose/SiO2 at high percent loading could favor landfill degradation of PLA via water absorption ability of cellulose. It was expected that enzymatic hydrolysis of cellulose resulted in the formation of lactic acid and silicic acid which consequently catalyzed the hydrolytic degradation (acid hydrolysis) of PLA. The hydrolytic degradation produced carboxylic acid end group which further accelerated the degradation rate.
Collapse
|