1
|
Akter T, Aziz MA, Islam MS, Sarwar MS. Association of MMP1 gene polymorphisms with breast cancer risk: A narrative review. Health Sci Rep 2023; 6:e1607. [PMID: 37841939 PMCID: PMC10570771 DOI: 10.1002/hsr2.1607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Background and Aims Breast cancer is a multifactorial malignancy with different clinicopathological and molecular characteristics. It is the most frequent cancer in women in terms of both incidence and mortality. Matrix metallopeptidase 1 or MMP1 is a zinc-dependent endopeptidase associated with several physiological processes through the modification of the extracellular matrix and tumor microenvironment. However, previous results did not suggest any concluding remarks on the correlation between MMP1 gene polymorphisms and the risk of breast cancer. Methods A comprehensive literature search was performed in PubMed database to retrieve relevant articles and extract data from suitable ones. The literature written only in English was selected for this review. Results A total of 26 articles were included in the present narrative review. From the available studies, it is observed that MMP1 is upregulated in breast cancer tissues and found to be correlated with metastasis and invasion. The expression of MMP1 gene is mediated by numerous factors, including polymorphisms which act as a potential risk factor for the progression of breast cancer. To establish the correlation between genetic polymorphisms in MMP1 and the risk of breast cancer, several case-control studies, as well as genetic analyses, have been carried out in different ethnicities. The association of genetic polymorphisms in MMP1 with the risk and survival of breast cancer in different populations has been reviewed in this study. Moreover, the structural domain of MMP1 and the role of MMP1 in breast cancer metastasis and invasion are also discussed which will help to understand the potential impact of MMP1 as a genetic biomarker. Conclusions This review provides an overview of the MMP1 gene polymorphisms in breast cancer. However, we recommend future studies concentrating on combined analysis of multiple SNPs, gene-gene interactions, and analysis of epigenetics, proteomics, and posttranscriptional modifications that will provide the best outcome.
Collapse
Affiliation(s)
- Tahmina Akter
- Department of Pharmacy, Faculty of ScienceNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Md. Abdul Aziz
- Department of PharmacyState University of BangladeshDhakaBangladesh
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Faculty of ScienceNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Md. Shahid Sarwar
- Department of Pharmacy, Faculty of ScienceNoakhali Science and Technology UniversityNoakhaliBangladesh
- Departement of Pharmaceutics, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
2
|
Mao S, Xia A, Tao X, Ye D, Qu J, Sun M, Wei H, Li G. A pan-cancer analysis of the prognostic and immunological roles of matrix metalloprotease-1 (MMP1) in human tumors. Front Oncol 2023; 12:1089550. [PMID: 36727076 PMCID: PMC9885257 DOI: 10.3389/fonc.2022.1089550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Objective Cancer remains the leading killer of human health worldwide. It has been shown that matrix metalloproteinase-1(MMP1) is related to poor prognosis in cancers such as BRCA, CESC and COAD. However, systematic pan-cancer analysis about the prognostic and immunological roles of MMP1 has not been explored. Here, the purpose of this study was to investigate the prognostic and immunological roles of MMP1 in pan-cancer and confirm cancer-promoting effect in pancreatic cancer. Methods In our study, bioinformatics were first used to analyze data from multiple databases. Then, several bioinformatics tools were utilized to investigate the role of MMP1 in 33 tumor types. Finally, molecular biology experiments were carried out to prove the cancer-promoting effect of MMP1 in pancreatic cancer. Results MMP1 expression was higher in tumor tissues than in control tissues in most tumor types. High expression of MMP1 was associated with poor overall survival (OS) and disease-free survival (DFS) in some tumor types. Further analysis of MMP1 gene mutation data showed that MMP1 mutations significantly influenced the prognosis of STAD. In addition, MMP1 expression was closely related to cancer-associated fibroblast (CAFs) infiltration in a variety of cancers and played an important role on immune infiltration score, tumor mutational burden (TMB) and microsatellite instability (MSI). Gene Ontology enrichment analysis indicated that these 20 genes were mainly related to extracellular structure organization/extracellular matrix organization/extracellular matrix disassembly/collagen metabolic process in the enriched biological processes. Finally, molecular biology experiments confirmed the cancer-promoting effect of MMP1 in pancreatic cancer. Conclusions Our pan-cancer analysis comprehensively proved that MMP1 expression is related with clinical prognosis and tumor immune infiltration, and MMP1 can become a prognostic and immunological biomarker.
Collapse
Affiliation(s)
- Shuai Mao
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Anliang Xia
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Xuewen Tao
- Department of Hepatobiliary Surgery, Medicine School of Southeast University Nanjing Drum Tower Hospital, Nanjing, China
| | - Dingde Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiamu Qu
- Department of Hepatobiliary Surgery, Medicine School of Southeast University Nanjing Drum Tower Hospital, Nanjing, China
| | - Meiling Sun
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Haowei Wei
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Guoqiang Li
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China,*Correspondence: Guoqiang Li,
| |
Collapse
|
3
|
Matrix Metalloproteinase Gene Polymorphisms Are Associated with Breast Cancer in the Caucasian Women of Russia. Int J Mol Sci 2022; 23:ijms232012638. [PMID: 36293492 PMCID: PMC9604098 DOI: 10.3390/ijms232012638] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 12/04/2022] Open
Abstract
We conducted this study to explore the association between matrix metalloproteinase (MMP) gene polymorphisms and breast cancer (BC) risk in the Caucasian women of Russia. In total, 358 affected (BC) and 746 unaffected (cancer-free) women were included in this case-control retrospective study. From BC-related genes in previous studies, ten single nucleotide polymorphisms (SNPs) in five MMP genes (MMP1, 2, 3, 8, 9) were genotyped. The BC risk was calculated by logistic regression (to evaluate the SNPs’ independent effects) and model-based multifactor dimensionality reduction (MB-MDR) (to identify SNP−SNP interactions) methods. The allelic variants’ distribution of c.836 A > G (rs17576) and c. 1721 C > G (rs2250889) MMP9 was significantly different between BC and cancer-free women: for G minor alleles, these SNPs manifested disorder protective effects (OR 0.82 and OR 0.67−0.71, respectively, pperm ≤ 0.035). Eleven haplotypes of six SNPs MMP9 were involved in BC risk (nine haplotypes) and protective (two haplotypes) effects. All 10 SNPs of the MMP genes examined were associated with BC within the 13 SNP−SNP interaction simulated models, with a pivotal role of the two-locus (rs17577 × rs3918242) MMP9 epistatic interaction (defined as 1.81% BC entropy within more than 60% of the genetic models). Under in silico bioinformatics, BC susceptibility MMP polymorphic loci are located in functionally active genome regions and impact genes expression and splicing “regulators” in the mammary gland. The biological pathways of BC MMP candidate genes are mainly realized due to metalloendopeptidase activity and extracellular matrix organization (structure, disassembly, metabolic process, etc.). In conclusion, our data show that MMP gene polymorphisms are related to BC susceptibility in the Caucasian women of Russia.
Collapse
|
4
|
Chen S, Ning B, Song J, Yang Z, Zhou L, Chen Z, Mao L, Liu H, Wang Q, He S, Zhou Z. Enhanced pentose phosphate pathway activity promotes pancreatic ductal adenocarcinoma progression via activating YAP/MMP1 axis under chronic acidosis. Int J Biol Sci 2022; 18:2304-2316. [PMID: 35414794 PMCID: PMC8990471 DOI: 10.7150/ijbs.69526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Acidic microenvironment is a common physiological phenomenon in tumors, and is closely related to cancer development, but the effects of acidosis on pancreatic adenocarcinoma (PDAC) remains to be elucidated. Methods: Metabonomic assay and transcriptomic microarray were used to detect the changes of metabolites and gene expression profile respectively in acidosis-adapted PDAC cells. Wound healing, transwell and in vivo assay were applied to evaluate cell migration and invasion capacity. CCK8 and colony formation assays were performed to determine cell proliferation. Results: The acidosis-adapted PDAC cells had stronger metastasis and proliferation ability compared with the control cells. Metabonomic analysis showed that acidosis-adapted PDAC cells had both increased glucose and decreased glycolysis, implying a shift to pentose phosphate pathway. The metabolic shift further led to the inactivation of AMPK by elevating ATP. Transcriptomic analysis revealed that the differentially expressed genes in acidosis-adapted cells were enriched in extracellular matrix modification and Hippo signaling. Besides, MMP1 was the most upregulated gene in acidosis-adapted cells, mediated by the YAP/TAZ pathway, but could be reduced by AMPK activator. Conclusion: The present study showed that metabolic reprogramming promotes proliferation and metastasis of acidosis-adapted PDAC cells by inhibiting AMPK/Hippo signaling, thus upregulating MMP1.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Chongqing Medical University, China
| | - Bo Ning
- Department of Gastroenterology, the Second Affiliated Hospital of Chongqing Medical University, China
| | - Jinwen Song
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Zihan Yang
- Department of Biomedical Science, City University of Hong Kong, Hong Kong SAR, China
| | - Li Zhou
- Department of Gastroenterology, the Second Affiliated Hospital of Chongqing Medical University, China
| | - Zhiji Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Chongqing Medical University, China
| | - Linhong Mao
- Department of Gastroenterology, the Second Affiliated Hospital of Chongqing Medical University, China
| | - Hongtao Liu
- Department of Gastroenterology, the Second Affiliated Hospital of Chongqing Medical University, China
| | - Qingliang Wang
- Department of Pathology, the Second Affiliated Hospital of Chongqing Medical University, China
| | - Song He
- Department of Gastroenterology, the Second Affiliated Hospital of Chongqing Medical University, China
| | - Zhihang Zhou
- Department of Gastroenterology, the Second Affiliated Hospital of Chongqing Medical University, China
| |
Collapse
|
5
|
Wei X, Zhang B, Pan B. MMP1 Is a Prognostic-Related Biomarker and Correlated with Immune Infiltration in Breast Cancer. Health (London) 2022. [DOI: 10.4236/health.2022.142017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
6
|
Investigation of the relationship between MMP-1 (- 1607 1G/2G), MMP-3 (- 1171 5A/6A) gene variations and development of bladder cancer. Mol Biol Rep 2021; 48:7689-7695. [PMID: 34693500 DOI: 10.1007/s11033-021-06775-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Chronic inflammation is an important risk factor in the development of bladder cancer. It may stimulate growth and metastasis of cancer cells. The inflammatory process includes MMP activities and expression. MMP activation can be stimulated by various inflammatory cells. Pathological processes such as bladder cancer may occur due to imbalance in MMP activities. In our study, we aimed to determine the relationship between MMP-1, MMP-3 gene variations associated with chronic inflammation and the bladder cancer development. METHODS Our study was carried out with 89 bladder cancer patients and 78 healthy controls. PCR-RFLP methods were applied to determine MMP-1 and MMP-3 gene variations genotype distributions. RESULTS 1G/1G homozygous and 1G/2G heterozygous genotypes of MMP-1 gene variation were determined more in patients than controls. The 5A/5A homozygous and 5A/6A heterozygous genotypes of the MMP-3 gene variation were detected more in patients than controls. The significant difference was detected in terms of genotype distributions of MMP-1 and MMP-3 gene variations between these groups (p < 0.05). In addition to, the most common haplotype in the patient group were detected as 1G/2G-5A/6A (20.22%). CONCLUSION In this study, MMP-1 and MMP-3 gene variations were determined as possible genetic risk factors for bladder cancer development in the Thrace population.
Collapse
|
7
|
Balkhi S, Mashayekhi F, Salehzadeh A, Saedi HS. Matrix metalloproteinase (MMP)-1 and MMP-3 gene variations affect MMP-1 and -3 serum concentration and associates with breast cancer. Mol Biol Rep 2020; 47:9637-9644. [PMID: 33170424 DOI: 10.1007/s11033-020-05962-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
Matrix metallopeptidases (MMPs) 1 and 3 have been shown to contribute to the initiation, and progression of different cancers, including breast cancer (BC). In this study, we aimed to examine the relations between polymorphisms of MMP1 (rs1799750) and MMP3 (rs632478) and their circulating levels with BC. The polymorphisms were genotyped by PCR-based Restriction Fragment Length Polymorphism (RFLP) and Allele-Specific PCR (AS-PCR) among 100 patients and 100 controls. MMP1 and MMP3 serum levels were measured by enzyme-linked immunosorbent assay (ELISA). Genotype distributions of MMP1 and MMP3 genes showed significant difference between patients and controls. The distribution of 2G/2G, 1G/2G and 1G/1G genotypes for MMP1 was 74%, 2% and 24% in the patients and 38%, 2% and 60% in the controls, respectively (P = 0.0001). For MMP3 the distribution of C/C, A/C and A/A genotypes was 28%, 54% and 18% in patients and 48%, 40% and 12% in controls, respectively (P = 0.01). For MMP1, the 2G/2G genotype was linked with a higher risk of BC when compared with that of the 1G/1G genotype (OR = 4.86; 95% CI = 2.63-8.99; P = 0.0001). For MMP3, in co-dominant model, there was a higher risk of BC in A/A and A/C genotype carriers (A/A: OR = 2.57; 95% CI = 1.08-6.11; P = 0.03) (A/C: OR = 2.31 95% CI = 1.24-4.30; P = 0.008). We also showed that MMP1 and MMP3 serum level was significantly increased in BC patients compared to controls. MMP1 and MMP3 genetic variations and their circulating levels are both significantly related to BC.
Collapse
Affiliation(s)
- Sahar Balkhi
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Farhad Mashayekhi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Hamid Saeedi Saedi
- Department of Radiation Oncology, Cancer Research Center, Guilan University of Medical Sciences (GUMS), Rasht, Iran
| |
Collapse
|
8
|
Geervliet E, Bansal R. Matrix Metalloproteinases as Potential Biomarkers and Therapeutic Targets in Liver Diseases. Cells 2020; 9:E1212. [PMID: 32414178 PMCID: PMC7290342 DOI: 10.3390/cells9051212] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 01/18/2023] Open
Abstract
Chronic liver diseases, characterized by an excessive accumulation of extracellular matrix (ECM) resulting in scar tissue formation, are a growing health problem causing increasing morbidity and mortality worldwide. Currently, therapeutic options for tissue fibrosis are severely limited, and organ transplantation is the only treatment for the end-stage liver diseases. During liver damage, injured hepatocytes release proinflammatory factors resulting in the recruitment and activation of immune cells that activate quiescent hepatic stellate cells (HSCs). Upon activation, HSCs transdifferentiate into highly proliferative, migratory, contractile and ECM-producing myofibroblasts. The disrupted balance between ECM deposition and degradation leads to the formation of scar tissue referred to as fibrosis. This balance can be restored either by reducing ECM deposition (by inhibition of HSCs activation and proliferation) or enhancing ECM degradation (by increased expression of matrix metalloproteinases (MMPs)). MMPs play an important role in ECM remodeling and represent an interesting target for therapeutic drug discovery. In this review, we present the current knowledge about ECM remodeling and role of the different MMPs in liver diseases. MMP expression patterns in different stages of liver diseases have also been reviewed to determine their role as biomarkers. Finally, we highlight MMPs as promising therapeutic targets for the resolution of liver diseases.
Collapse
Affiliation(s)
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands;
| |
Collapse
|
9
|
Song L, Liu H, Liu Q. Matrix metalloproteinase 1 promotes tumorigenesis and inhibits the sensitivity to 5-fluorouracil of nasopharyngeal carcinoma. Biomed Pharmacother 2019; 118:109120. [DOI: 10.1016/j.biopha.2019.109120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/30/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
|
10
|
The Role of Circulating CD16+CD56+ Natural Killer Cells in the Screening, Diagnosis, and Staging of Colorectal Cancer before Initial Treatment. DISEASE MARKERS 2019; 2019:7152183. [PMID: 31636738 PMCID: PMC6766087 DOI: 10.1155/2019/7152183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Background and Objective A reliable noninvasive prediction tool for the screening, diagnosis, and/or staging of colorectal cancer (CRC) before surgery is critical for the choice of treatment and prognosis. Methods Patients admitted for initial treatment of CRC between January 1, 2015, and December 31, 2018, were retrieved and reviewed. Records of CD16+CD56+ natural killer (NK) cells were analyzed according to the stages of CRC. Results The number of qualified participants in the healthy, stage I, stage II, stage III, and stage IV CRC patients were 60, 66, 60, 70, and 68, respectively. There was a significant difference in circulating CD16+CD56+ NK cells between the healthy group and the CRC group (p < 0.01), as well as between the healthy group and stage III or IV CRC group (p < 0.01 and 0.001, respectively). The percentage of circulating CD16+CD56+ NK cells in lymphocytes was negatively correlated with the occurrence of CRC. When comparing the pool of stage I and II CRC cases with the pool of stage III and IV CRC cases using circulating CD16+CD56+ NK cells, the area under the Receiver Operating Characteristic curve was 0.878. Using an optimal cutoff value of 15.6%, the OR was 0.06 (0.03, 0.11), p < 0.001, sensitivity was 86.5%, specificity was 72.5%, positive predictive value was 74.2%, and negative predictive value was 85.5%. Conclusions Circulating CD16+CD56+ NK cells can be used as a screening and diagnostic/staging tool for CRC.
Collapse
|
11
|
Cui F, Qu D, Sun R, Nan K. Circulating CD16+CD56+ nature killer cells indicate the prognosis of colorectal cancer after initial chemotherapy. Med Oncol 2019; 36:84. [PMID: 31493232 DOI: 10.1007/s12032-019-1307-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
As the prognosis of colorectal cancer (CRC) does not always coincide with the pathology and/or surgical findings, a reliable noninvasive prediction tool for the prognosis of CRC is needed. Patients admitted for initial treatment of CRC between January 1, 2015 and December 31, 2015 were retrieved and reviewed. Records of circulating CD16+ CD56+ natural killer (NK) cells were analyzed before and after the initial chemotherapy of FOLFOX plan. Patients were followed up until June 30, 2019. One hundred and twenty-four cases after the FOLFOX chemotherapy were enrolled into this study. There were no significant differences in gender, age, or number of metastasis cases between the survival group and the nonsurvival group (p > 0.05), but significant differences in pre-chemotherapy, post-chemotherapy, and the differences between pre- and post-chemotherapy circulating CD16+ CD56+ NK cells between the survival group and the nonsurvival group (p < 0.01, p < 0.01, and p < 0.05, respectively) were observed. For the prediction of survival and nonsurvival CRC cases, the Areas Under the Curve were 0.626 and 0.759 in the Receiver-Operating Characteristic curves for the pre- and post-chemotherapy circulating CD16+ CD56+NK cells, respectively. Using an optimal cutoff value of 11.8% in post-chemotherapy circulating CD16+CD56+NK cells to differentiate survival and nonsurvival cases, the odds ratio was 0.12 (0.05, 0.27), p < 0.001. The percentages of both pre-chemotherapy and post-chemotherapy circulating CD16+CD56+NK cells were negatively correlated with the prognosis of CRC. The percentage of post-chemotherapy circulating CD16+CD56+NK cells was able to effectively predict the prognosis of CRC cases.
Collapse
Affiliation(s)
- Feng Cui
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiao Tong University, No. 277, Yanta West Road, Xi'an, 710061, Shanxi, China
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Qu
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruya Sun
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kejun Nan
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiao Tong University, No. 277, Yanta West Road, Xi'an, 710061, Shanxi, China.
| |
Collapse
|
12
|
The Role of M3 Muscarinic Receptor Ligand-Induced Kinase Signaling in Colon Cancer Progression. Cancers (Basel) 2019; 11:cancers11030308. [PMID: 30841571 PMCID: PMC6468573 DOI: 10.3390/cancers11030308] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 02/08/2023] Open
Abstract
Despite a reduction in incidence over the past decade, colon cancer remains the second most common cause of cancer death in the United States; recent demographics suggest this disease is now afflicting younger persons. M3 muscarinic receptor (M3R) mRNA and protein are over-expressed in colon cancer, and M3R can be activated by both traditional (e.g., acetylcholine) and non-traditional (e.g., bile acids) muscarinic ligands. In this review, we weigh the data supporting a prominent role for key protein kinases downstream of M3R activation in promoting colon cancer progression and dissemination. Specifically, we explore the roles that downstream activation of the mitogen activated protein kinase/extracellular signal-related kinase (MAPK/ERK), protein kinase C, p38 MAPK, and phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathways play in mediating colon cancer cell proliferation, survival, migration and invasion. We assess the impact of M3R-stimulated induction of selected matrix metalloproteinases germane to these hallmarks of colon cancer progression. In this context, we also critically review the reproducibility of findings derived from a variety of in vivo and in vitro colon cancer models, and their fidelity to human disease. Finally, we summarize the therapeutic potential of targeting various steps from ligand-M3R interaction to the activation of key downstream molecules.
Collapse
|
13
|
Targeting Tumor Microenvironment for Cancer Therapy. Int J Mol Sci 2019; 20:ijms20040840. [PMID: 30781344 PMCID: PMC6413095 DOI: 10.3390/ijms20040840] [Citation(s) in RCA: 771] [Impact Index Per Article: 128.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer development is highly associated to the physiological state of the tumor microenvironment (TME). Despite the existing heterogeneity of tumors from the same or from different anatomical locations, common features can be found in the TME maturation of epithelial-derived tumors. Genetic alterations in tumor cells result in hyperplasia, uncontrolled growth, resistance to apoptosis, and metabolic shift towards anaerobic glycolysis (Warburg effect). These events create hypoxia, oxidative stress and acidosis within the TME triggering an adjustment of the extracellular matrix (ECM), a response from neighbor stromal cells (e.g., fibroblasts) and immune cells (lymphocytes and macrophages), inducing angiogenesis and, ultimately, resulting in metastasis. Exosomes secreted by TME cells are central players in all these events. The TME profile is preponderant on prognosis and impacts efficacy of anti-cancer therapies. Hence, a big effort has been made to develop new therapeutic strategies towards a more efficient targeting of TME. These efforts focus on: (i) therapeutic strategies targeting TME components, extending from conventional therapeutics, to combined therapies and nanomedicines; and (ii) the development of models that accurately resemble the TME for bench investigations, including tumor-tissue explants, “tumor on a chip” or multicellular tumor-spheroids.
Collapse
|