1
|
Lo TS, Chen YP, Harun F, Shaw SW, Lin YH. The properties of absorbable scaffold harvested with human amniotic fluid stem cells on rat model: an innovation for pelvic reconstruction surgery. Sci Rep 2024; 14:12750. [PMID: 38830952 PMCID: PMC11148079 DOI: 10.1038/s41598-024-63375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
The current practice of restoring the anatomical structure in the treatment of pelvic floor dysfunction includes implantation of synthetic sling, which carries potential complications. This study aimed to develop biological substitutes to improve tissue function using scaffolds as a support to the host cells, through formation of new tissue. Human amniotic fluid stem cells (hAFSCs) were seeded on synthetic mesh-scaffold of AlloDerm Regenerative Tissue Matrix (RTM), Poly-DL-lactico-glycolic acid (PLGA) mesh (VICRYL) and Polydioxanone (PDS) meshes. In vitro study evaluates the metabolic activity of hAFSCs seeded mesh-scaffolds. In vivo study involving Sprague-Dawley rats was performed by assigning into 7 groups of sham control with fascia operation, AlloDerm implant, PDS implant, PLGA implant, AlloDerm harvest with hAFSC (AlloDerm-SC), PDS harvest with hAFSC(PDS-SC) and PLGS harvest with hAFSC (PGLA-SC). In vitro study reveals cell viability and proliferation of hAFSC on mesh scaffolds varies between meshes, with AlloDerm growing the fastest. The biomechanical properties of tissue-mesh-complex tension strength declined over time, showing highest tension strength on week-1, deteriorated similar to control group on week-12. All hAFSC-seeded mesh provides higher tension strength, compared to without. This study shed the potential of synthetic mesh as a scaffold for hAFSC for the surgical treatment of pelvic floor dysfunction.
Collapse
Affiliation(s)
- Tsia-Shu Lo
- Division of Urogynecology, Department of Obstetrics and Gynecology, Linkou, Chang Gung Memorial Hospital, Linkou Medical Center, 5, Fu-Hsin Street, Kwei-shan, 333, Taoyuan, Taiwan.
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Keelung Medical Center, Keelung, Taiwan.
- Department of Obstetrics and Gynecology, Medical Center, Chang Gung Memorial Hospital, Taipei, Taiwan.
- School of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Yi-Pin Chen
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Keelung Medical Center, Keelung, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fazlin Harun
- Department of Obstetrics and Gynecology, Women and Children Hospital (Hospital Tunku Azizah), Kuala Lumpur, Malaysia
| | - Steven W Shaw
- Department of Obstetrics and Gynecology, Medical Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hao Lin
- Division of Urogynecology, Department of Obstetrics and Gynecology, Linkou, Chang Gung Memorial Hospital, Linkou Medical Center, 5, Fu-Hsin Street, Kwei-shan, 333, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Henckes NAC, Faleiro D, Chuang LC, Cirne-Lima EO. Scaffold strategies combined with mesenchymal stem cells in vaginal construction: a review. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:26. [PMID: 34337675 PMCID: PMC8326237 DOI: 10.1186/s13619-021-00088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/17/2021] [Indexed: 11/10/2022]
Abstract
Tissue engineering has provided new treatment alternatives for tissue reconstruction. Advances in the tissue engineering field have resulted in mechanical support and biological substitutes to restore, maintain or improve tissue/organs structures and functions. The application of tissue engineering technology in the vaginal reconstruction treatment can not only provide mechanical requirements, but also offer tissue repairing as an alternative to traditional approaches. In this review, we discuss recent advances in cell-based therapy in combination with scaffolds strategies that can potentially be adopted for gynaecological transplantation.
Collapse
Affiliation(s)
- Nicole Andréa Corbellini Henckes
- Programa de Pós-Graduação em Ciências da Saúde-Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Dalana Faleiro
- Programa de Pós-Graduação em Ciências da Saúde-Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Laura Chao Chuang
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Elizabeth Obino Cirne-Lima
- Programa de Pós-Graduação em Ciências da Saúde-Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
3
|
Next-generation surgical meshes for drug delivery and tissue engineering applications: materials, design and emerging manufacturing technologies. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00108-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Surgical meshes have been employed in the management of a variety of pathological conditions including hernia, pelvic floor dysfunctions, periodontal guided bone regeneration, wound healing and more recently for breast plastic surgery after mastectomy. These common pathologies affect a wide portion of the worldwide population; therefore, an effective and enhanced treatment is crucial to ameliorate patients’ living conditions both from medical and aesthetic points of view. At present, non-absorbable synthetic polymers are the most widely used class of biomaterials for the manufacturing of mesh implants for hernia, pelvic floor dysfunctions and guided bone regeneration, with polypropylene and poly tetrafluoroethylene being the most common. Biological prostheses, such as surgical grafts, have been employed mainly for breast plastic surgery and wound healing applications. Despite the advantages of mesh implants to the treatment of these conditions, there are still many drawbacks, mainly related to the arising of a huge number of post-operative complications, among which infections are the most common. Developing a mesh that could appropriately integrate with the native tissue, promote its healing and constructive remodelling, is the key aim of ongoing research in the area of surgical mesh implants. To this end, the adoption of new biomaterials including absorbable and natural polymers, the use of drugs and advanced manufacturing technologies, such as 3D printing and electrospinning, are under investigation to address the previously mentioned challenges and improve the outcomes of future clinical practice. The aim of this work is to review the key advantages and disadvantages related to the use of surgical meshes, the main issues characterizing each clinical procedure and the future directions in terms of both novel manufacturing technologies and latest regulatory considerations.
Graphic abstract
Collapse
|
4
|
Laparoscopic approach to pelvic organ prolapse - the way to go or a blind alley? Wideochir Inne Tech Maloinwazyjne 2020; 14:469-475. [PMID: 31908691 PMCID: PMC6939204 DOI: 10.5114/wiitm.2019.88749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/04/2019] [Indexed: 11/17/2022] Open
Abstract
Pelvic organ prolapse represents a relatively frequent diagnosis that requires attention due to its detrimental effect on quality of life. Not surprisingly, it is one of the commonest indications for surgery in premenopausal and postmenopausal women, often requiring a complex multidisciplinary approach. Traditional vaginal procedures are being gradually replaced by laparoscopic techniques, offering anticipated benefits in reduced recurrence and complication rates, while respecting the trend towards uterus sparing if desirable. Recently, questions about the safety of alloplastic materials used in pelvic organ prolapse surgery were raised, leading to official restrictions in their use, particularly for transvaginal application. As a result, laparoscopic procedures might appear slightly favored but caution must be taken to assure proper technique of mesh placement while maintaining high awareness of possible long-term mesh-related complications that require close surveillance. Therefore, adequate education and training becomes even more important to achieve optimal results and to avoid possible serious medico-legal charges.
Collapse
|
5
|
Mancuso E, Downey C, Doxford‐Hook E, Bryant MG, Culmer P. The use of polymeric meshes for pelvic organ prolapse: Current concepts, challenges, and future perspectives. J Biomed Mater Res B Appl Biomater 2019; 108:771-789. [DOI: 10.1002/jbm.b.34432] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/07/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Elena Mancuso
- Ulster UniversityNanotechnology and Integrated Bio‐Engineering Centre (NIBEC) Jordanstown campus ‐ Newtownabbey UK
| | - Candice Downey
- Leeds Institute of Medical Research at St James'sUniversity of Leeds Leeds UK
| | | | | | - Peter Culmer
- School of Mechanical EngineeringUniversity of Leeds Leeds UK
| |
Collapse
|
6
|
Muhamed J, Anilkumar T, Rajan A, Surendran A, Jaleel A. Identification of potentially immunogenic proteins in porcine cholecyst extracellular matrix. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/aaf4e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Cohen SA. Is There Still a Role for Transvaginal Mesh in Treatment of Pelvic Organ Prolapse? CURRENT BLADDER DYSFUNCTION REPORTS 2018. [DOI: 10.1007/s11884-018-0497-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|