1
|
Zhu T, Hsu JC, Guo J, Chen W, Cai W, Wang K. Radionuclide-based theranostics - a promising strategy for lung cancer. Eur J Nucl Med Mol Imaging 2023; 50:2353-2374. [PMID: 36929181 PMCID: PMC10272099 DOI: 10.1007/s00259-023-06174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/25/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE This review aims to provide a comprehensive overview of the latest literature on personalized lung cancer management using different ligands and radionuclide-based tumor-targeting agents. BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide. Due to the heterogeneity of lung cancer, advances in precision medicine may enhance the disease management landscape. More recently, theranostics using the same molecule labeled with two different radionuclides for imaging and treatment has emerged as a promising strategy for systemic cancer management. In radionuclide-based theranostics, the target, ligand, and radionuclide should all be carefully considered to achieve an accurate diagnosis and optimal therapeutic effects for lung cancer. METHODS We summarize the latest radiotracers and radioligand therapeutic agents used in diagnosing and treating lung cancer. In addition, we discuss the potential clinical applications and limitations associated with target-dependent radiotracers as well as therapeutic radionuclides. Finally, we provide our views on the perspectives for future development in this field. CONCLUSIONS Radionuclide-based theranostics show great potential in tailored medical care. We expect that this review can provide an understanding of the latest advances in radionuclide therapy for lung cancer and promote the application of radioligand theranostics in personalized medicine.
Collapse
Affiliation(s)
- Tianxing Zhu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jingpei Guo
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Weiyu Chen
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Kai Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| |
Collapse
|
2
|
Radiochemistry with {Al18F}2+: Current status and optimization perspectives for efficient radiofluorination by complexation. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
3
|
Sadre Momtaz A, Safarnejad F. 18F-alfatide II internal dosimetry using the ICRP 110 adult reference phantoms and the ICRP 103 tissue weighting factors. Phys Med 2023; 107:102552. [PMID: 36857858 DOI: 10.1016/j.ejmp.2023.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/02/2023] [Accepted: 02/18/2023] [Indexed: 03/03/2023] Open
Abstract
PURPOSE 18F-alfatide II is an arginine-glycine-aspartate (RGD) peptide-based PET tracer with promising imaging properties and pharmacokinetics. This study aims to calculate the absorbed and effective doses of 18F-alfatide II using the ICRP 110 adult reference phantoms and the ICRP 103 tissue weighting factors. METHODS The MIRD method was used in this study to calculate the absorbed dose of organs and tissues. The biokinetic data were taken from a previous study. These data are based on the whole-body PET imaging of mice. RESULTS The results show that the effective dose per unit activity administered of 18F-alfatide II is 1.33E-02 mSv/MBq. The urinary bladder wall receives the highest absorbed dose due to the administration of this radiopharmaceutical. Also, the effective dose of 18F-alfatide II is lower than that of 18F-FDG and some other RGD peptide-based tracers. CONCLUSIONS Dose calculation using ICRP 110 voxelized adult reference phantoms and ICRP 103 tissue weighting factors leads to more realistic and accurate results for 18F-alfatide II compared to the stylized phantoms. The calculated effective dose of 18F-alfatide II in the present study is lower than that of previously published data.
Collapse
Affiliation(s)
- Alireza Sadre Momtaz
- Department of Physics, Faculty of Sciences, University of Guilan, Rasht 41335-1914, Iran.
| | - Farzin Safarnejad
- Department of Physics, Faculty of Sciences, University of Guilan, Rasht 41335-1914, Iran
| |
Collapse
|
4
|
Sheikhpour M, Mirbahari SN, Sadr M, Maleki M, Arabi M, Abolfathi H. A Comprehensive Study on the Correlation of Treatment, Diagnosis and Epidemiology of Tuberculosis and Lung Cancer. TANAFFOS 2023; 22:7-18. [PMID: 37920308 PMCID: PMC10618578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/24/2022] [Indexed: 11/04/2023]
Abstract
The correlation between tuberculosis (TB) and lung cancer (LC) in diagnosis, epidemiology, and treatment is still unclear. Based on different cohort and retrospective studies, this correlation could be justified by immune weakness because of exposure to TB which may increase the risk of LC. In this study, we tried to exhibit a prominent connection between TB and LC. The diagnosis and treatment of patients with concomitant TB and LC differ from patients with only one of the diseases. In this review, it was well clarified that the most practical diagnostic method for LC is chest tomography, biopsy, and histopathology, and for pulmonary TB sputum microscopic examination, Autofluorescence bronchoscopy (AFB), culture, and PCR. Also, immunological methods can be a good alternative for differential diagnosis. Most epidemiological studies were about concomitant TB and LC in TB-endemic areas, especially in the Middle East. The most suggested methods for definite treatment of LC are chemotherapy, radiotherapy, and surgery while for TB, a long course of anti-TB therapy can be used. Moreover, immunotherapy is considered a good treatment for lung cancer if the interferon-gamma release assay (IGRA) is negative.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Seyedeh Nasim Mirbahari
- Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Makan Sadr
- Virology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Maleki
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mohadeseh Arabi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Hanie Abolfathi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Lawal IO, Abubakar S, Ankrah AO, Sathekge MM. Molecular Imaging of Tuberculosis. Semin Nucl Med 2023; 53:37-56. [PMID: 35882621 DOI: 10.1053/j.semnuclmed.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/05/2022] [Indexed: 01/28/2023]
Abstract
Despite the introduction of many novel diagnostic techniques and newer treatment agents, tuberculosis (TB) remains a major cause of death from an infectious disease worldwide. With about a quarter of humanity harboring Mycobacterium tuberculosis, the causative agent of TB, the current efforts geared towards reducing the scourge due to TB must be sustained. At the same time, newer alternative modalities for diagnosis and treatment response assessment are considered. Molecular imaging entails the use of radioactive probes that exploit molecular targets expressed by microbes or human cells for imaging using hybrid scanners that provide both anatomic and functional features of the disease being imaged. Fluorine-18 fluorodeoxyglucose (FDG) is the most investigated radioactive probe for TB imaging in research and clinical practice. When imaged with positron emission tomography interphase with computed tomography (PET/CT), FDG PET/CT performs better than sputum conversion for predicting treatment outcome. At the end of treatment, FDG PET/CT has demonstrated the unique ability to identify a subset of patients declared cured based on the current standard of care but who still harbor live bacilli capable of causing disease relapse after therapy discontinuation. Our understanding of the pathogenesis and evolution of TB has improved significantly in the last decade, owing to the introduction of FDG PET/CT in TB research. FDG is a non-specific probe as it targets the host inflammatory response to Mycobacterium tuberculosis, which is not specifically different in TB compared with other infectious conditions. Ongoing efforts are geared towards evaluating the utility of newer probes targeting different components of the TB granuloma, the hallmark of TB lesions, including hypoxia, neovascularization, and fibrosis, in TB management. The most exciting category of non-FDG PET probes developed for molecular imaging of TB appears to be radiolabeled anti-tuberculous drugs for use in studying the pharmacokinetic characteristics of the drugs. This allows for the non-invasive study of drug kinetics in different body compartments concurrently, providing an insight into the spatial heterogeneity of drug exposure in different TB lesions. The ability to repeat molecular imaging using radiolabeled anti-tuberculous agents also offers an opportunity to study the temporal changes in drug kinetics within the different lesions during treatment.
Collapse
Affiliation(s)
- Ismaheel O Lawal
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA; Department of Nuclear Medicine, University of Pretoria, Pretoria, Gauteng, South Africa.
| | - Sofiullah Abubakar
- Department of Radiology and Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care and Research Center, Muscat, Oman
| | - Alfred O Ankrah
- Department of Nuclear Medicine, University of Pretoria, Pretoria, Gauteng, South Africa; National Center for Radiotherapy Oncology and Nuclear Medicine, Korle Bu Teaching Hospital, Accra, Ghana; Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria, Gauteng, South Africa; Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| |
Collapse
|
6
|
Dhingra VK, Khan D, Kumar R, Basu S. Nonmalignant Thoracic Disorders: An Appraisal of Fluorodeoxyglucose and Non-fluorodeoxyglucose PET/Computed Tomography Applications. PET Clin 2022; 17:495-515. [PMID: 35717104 DOI: 10.1016/j.cpet.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PET/computed tomography (CT) with fluorodeoxyglucose and nonfluorodeoxyglucose PET tracers has established itself in the management of malignant disorders. Its role in the assessment of nonmalignant conditions, such as infectious and noninfectious inflammatory diseases and other benign conditions, has emerged independently and alongside its role being evaluated in malignancy and continues to evolve. It is evident that PET/CT has the potential to play a significant role in various nonmalignant disorders of the thorax. This review highlights current developments and areas where PET/CT has a potential to impact the clinical management of nonmalignant thoracic conditions with special focus on nonfluorodeoxyglucose tracers.
Collapse
Affiliation(s)
- Vandana Kumar Dhingra
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand 249203, India
| | - Dikhra Khan
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Sri Aurobindo Marg, Ansari Nagar, Ansari Nagar East, New Delhi, Delhi 110029, India
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Sri Aurobindo Marg, Ansari Nagar, Ansari Nagar East, New Delhi, Delhi 110029, India
| | - Sandip Basu
- Radiation Medicine Centre (B.A.R.C), Tata Memorial Hospital Annexe, Jerbai Wadia Road, Parel, Mumbai, Maharashtra 400012, India; Homi Bhabha National Institute, 2nd floor, BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra 400094, India.
| |
Collapse
|
7
|
Krarup MMK, Fischer BM, Christensen TN. New PET Tracers: Current Knowledge and Perspectives in Lung Cancer. Semin Nucl Med 2022; 52:781-796. [PMID: 35752465 DOI: 10.1053/j.semnuclmed.2022.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/11/2022]
Abstract
PET/CT with the tracer 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) has improved diagnostic imaging in cancer and is routinely used for diagnosing, staging and treatment planning in lung cancer patients. However, pitfalls of [18F]FDG-PET/CT limit the use in specific settings. Additionally, lung cancer is still the leading cause of cancer associated death and has high risk of recurrence after curative treatment. These circumstances have led to the continuous search for more sensitive and specific PET tracers to optimize lung cancer diagnosis, staging, treatment planning and evaluation. The objective of this review is to present and discuss current knowledge and perspectives of new PET tracers for use in lung cancer. A literature search was performed on PubMed and clinicaltrials.gov, limited to the past decade, excluding case reports, preclinical studies and studies on established tracers such as [18F]FDG and DOTATE. The most relevant papers from the search were evaluated. Several tracers have been developed targeting specific tumor characteristics and hallmarks of cancer. A small number of tracers have been studied extensively and evaluated head-to-head with [18F]FDG-PET/CT, whereas others need further investigation and validation in larger clinical trials. At this moment, none of the tracers can replace [18F]FDG-PET/CT. However, they might serve as supplementary imaging methods to provide more knowledge about biological tumor characteristics and visualize intra- and inter-tumoral heterogeneity.
Collapse
Affiliation(s)
- Marie M K Krarup
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Copehagen University Hospital, Copenhagen, Denmark.
| | - Barbara M Fischer
- Department of Clinical Medicine, Faculty of Health, Univeristy of Copenhagen (UCPH), Copenhagen, Denmark; School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Tine N Christensen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Copehagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
8
|
Li L, Chen X, Yu J, Yuan S. Preliminary Clinical Application of RGD-Containing Peptides as PET Radiotracers for Imaging Tumors. Front Oncol 2022; 12:837952. [PMID: 35311120 PMCID: PMC8924613 DOI: 10.3389/fonc.2022.837952] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a common feature of many physiological processes and pathological conditions. RGD-containing peptides can strongly bind to integrin αvβ3 expressed on endothelial cells in neovessels and several tumor cells with high specificity, making them promising molecular agents for imaging angiogenesis. Although studies of RGD-containing peptides combined with radionuclides, namely, 18F, 64Cu, and 68Ga for positron emission tomography (PET) imaging have shown high spatial resolution and accurate quantification of tracer uptake, only a few of these radiotracers have been successfully translated into clinical use. This review summarizes the RGD-based tracers in terms of accumulation in tumors and adjacent tissues, and comparison with traditional 18F-fluorodeoxyglucose (FDG) imaging. The value of RGD-based tracers for diagnosis, differential diagnosis, tumor subvolume delineation, and therapeutic response prediction is mainly discussed. Very low RGD accumulation, in contrast to high FDG metabolism, was found in normal brain tissue, indicating that RGD-based imaging provides an excellent tumor-to-background ratio for improved brain tumor imaging. However, the intensity of the RGD-based tracers is much higher than FDG in normal liver tissue, which could lead to underestimation of primary or metastatic lesions in liver. In multiple studies, RGD-based imaging successfully realized the diagnosis and differential diagnosis of solid tumors and also the prediction of chemoradiotherapy response, providing complementary rather than similar information relative to FDG imaging. Of most interest, baseline RGD uptake values can not only be used to predict the tumor efficacy of antiangiogenic therapy, but also to monitor the occurrence of adverse events in normal organs. This unique dual predictive value in antiangiogenic therapy may be better than that of FDG-based imaging.
Collapse
Affiliation(s)
- Li Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Shuanghu Yuan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Sun CY, Mi YY, Ge SY, Hu QF, Xu K, Guo YJ, Tan YF, Zhang Y, Zhong F, Xia GW. Tumor- and Osteoblast-Derived Periostin in Prostate Cancer bone Metastases. Front Oncol 2022; 11:795712. [PMID: 35087756 PMCID: PMC8787093 DOI: 10.3389/fonc.2021.795712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
Exploring the biological function of periostin (POSTN) in prostate cancer (PCa) bone metastasis is of importance. It was observed that the expression of POSTN was high in PCa, especially highest in PCa metastasized to bone. In this study, we found that inhibiting POSTN in PCa cells could significantly alleviate PCa bone metastasis in vivo, suggesting POSTN is a promising therapeutic target. Since, due to the secreted expression of POSTN in osteoblasts and PCa, we hypothesized the positive feedback loop between osteoblasts and PCa mediated by POSTN in PCa bone metastasis. The in vitro experiments demonstrated that osteoblast-derived POSTN promoted PCa cell proliferation and invasion and PCa cell-derived POSTN promotes proliferation of osteoblasts. Furthermore, we found that POSTN regulated PCa and osteoblast function through integrin receptors. Finally, 18F-Alfatide II was used as the molecule probe of integrin αvβ3 in PET-CT, revealing high intake in metastatic lesions. Our findings together indicate that targeting POSTN in PCa cells as well as in the osteoblastic may be an effective treatment for PCa bone metastasis.
Collapse
Affiliation(s)
- Chuan-Yu Sun
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuan-Yuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Sheng-Yang Ge
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing-Feng Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ke Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Jun Guo
- Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Yi-Fan Tan
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Zhang
- Department of Systems Biology for Medicine, Shanghai Medical College, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fan Zhong
- Department of Systems Biology for Medicine, Shanghai Medical College, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guo-Wei Xia
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Archibald SJ, Allott L. The aluminium-[ 18F]fluoride revolution: simple radiochemistry with a big impact for radiolabelled biomolecules. EJNMMI Radiopharm Chem 2021; 6:30. [PMID: 34436693 PMCID: PMC8390636 DOI: 10.1186/s41181-021-00141-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
The aluminium-[18F]fluoride ([18F]AlF) radiolabelling method combines the favourable decay characteristics of fluorine-18 with the convenience and familiarity of metal-based radiochemistry and has been used to parallel gallium-68 radiopharmaceutical developments. As such, the [18F]AlF method is popular and widely implemented in the development of radiopharmaceuticals for the clinic. In this review, we capture the current status of [18F]AlF-based technology and reflect upon its impact on nuclear medicine, as well as offering our perspective on what the future holds for this unique radiolabelling method.
Collapse
Affiliation(s)
- Stephen J Archibald
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK.,Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, Castle Road, Cottingham, HU16 5JQ, UK
| | - Louis Allott
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK. .,Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK. .,Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, Castle Road, Cottingham, HU16 5JQ, UK.
| |
Collapse
|
11
|
Cui Z, Hu Y, Wang H. Survey of signal clamping for digital phase sensitive detector. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:015109. [PMID: 32012620 DOI: 10.1063/1.5119850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Electrical capacitance tomography (ECT) is a multiphase flow detection technology, which has the advantages of nonradioactive, noninvasive, and on-line visualization measurements. In ECT measurements, the digital phase sensitive demodulation (PSD) plays an important role in guaranteeing the accuracy of small capacitance measurements. Generally, the clamping circuit is implemented to protect the A/D converter. In the measuring circuit, a programmable gain amplifier is usually employed to expand the dynamic range of PSD. However, the measured signal may exceed the measurement range from time to time, which induces the signal clamping effect. In this case, the digital PSD will present large errors in the capacitance measurements. In consideration of the frequency spectrum characteristic of the clamped signal, two digital PSD methods have been proposed. The proposed methods have been implemented in a field programmable gate array based measurement system. The experimental results show that the proposed multisine PSD method could expand the dynamic range by a factor of 5, at a relatively low error, i.e., ≤2%.
Collapse
Affiliation(s)
- Ziqiang Cui
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| | - Yafeng Hu
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| | - Huaxiang Wang
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
12
|
Liu Z, Yu L, Cheng K, Feng Y, Qiu P, Gai Y, Zhou M. Optimization, automation and validation of the large-scale radiosynthesis of Al 18F tracers in a custom-made automatic platform for high yield. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00144a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A custom-made automatic platform was designed and developed for large scale Al18F tracer synthesis with high yield.
Collapse
Affiliation(s)
- Zhiguo Liu
- Department of PET/CT Center
- Shandong Cancer Hospital and Institute
- Shandong First Medical University and Shandong Academy of Medical Sciences
- Jinan
- China
| | - Lun Yu
- Department of PET-CT Center
- Chenzhou No. 1 People's Hospital
- Chenzhou 423000
- China
| | - Kai Cheng
- Department of PET/CT Center
- Shandong Cancer Hospital and Institute
- Shandong First Medical University and Shandong Academy of Medical Sciences
- Jinan
- China
| | - Yabo Feng
- Department of PET-CT Center
- Chenzhou No. 1 People's Hospital
- Chenzhou 423000
- China
| | - Pengfei Qiu
- Breast Cancer Center
- Shandong Cancer Hospital and Institute
- Shandong First Medical University and Shandong Academy of Medical Sciences
- Jinan 250117
- China
| | - Yongkang Gai
- Department of Nuclear Medicine
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Ming Zhou
- Department of Nuclear Medicine
- Xiangya Hospital
- Central South University
- Changsha 410008
- China
| |
Collapse
|
13
|
Fersing C, Bouhlel A, Cantelli C, Garrigue P, Lisowski V, Guillet B. A Comprehensive Review of Non-Covalent Radiofluorination Approaches Using Aluminum [ 18F]fluoride: Will [ 18F]AlF Replace 68Ga for Metal Chelate Labeling? Molecules 2019; 24:E2866. [PMID: 31394799 PMCID: PMC6719958 DOI: 10.3390/molecules24162866] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
Due to its ideal physical properties, fluorine-18 turns out to be a key radionuclide for positron emission tomography (PET) imaging, for both preclinical and clinical applications. However, usual biomolecules radiofluorination procedures require the formation of covalent bonds with fluorinated prosthetic groups. This drawback makes radiofluorination impractical for routine radiolabeling, gallium-68 appearing to be much more convenient for the labeling of chelator-bearing PET probes. In response to this limitation, a recent expansion of the 18F chemical toolbox gave aluminum [18F]fluoride chemistry a real prominence since the late 2000s. This approach is based on the formation of an [18F][AlF]2+ cation, complexed with a 9-membered cyclic chelator such as NOTA, NODA or their analogs. Allowing a one-step radiofluorination in an aqueous medium, this technique combines fluorine-18 and non-covalent radiolabeling with the advantage of being very easy to implement. Since its first reports, [18F]AlF radiolabeling approach has been applied to a wide variety of potential PET imaging vectors, whether of peptidic, proteic, or small molecule structure. Most of these [18F]AlF-labeled tracers showed promising preclinical results and have reached the clinical evaluation stage for some of them. The aim of this report is to provide a comprehensive overview of [18F]AlF labeling applications through a description of the various [18F]AlF-labeled conjugates, from their radiosynthesis to their evaluation as PET imaging agents.
Collapse
Affiliation(s)
- Cyril Fersing
- Institut de Recherche en Cancérologie de Montpellier (IRCM), University of Montpellier, INSERM U1194, Montpellier Cancer Institute (ICM), 34298 Montpellier, France.
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), University of Montpellier, 208 Avenue des Apothicaires, 34298 Montpellier CEDEX 5, France.
| | - Ahlem Bouhlel
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
| | - Christophe Cantelli
- Institut de Recherche en Cancérologie de Montpellier (IRCM), University of Montpellier, INSERM U1194, Montpellier Cancer Institute (ICM), 34298 Montpellier, France
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, 34093 Montpellier CEDEX, France
| | - Philippe Garrigue
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
- Department of Nuclear Medicine, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13385 Marseille, France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, 34093 Montpellier CEDEX, France
| | - Benjamin Guillet
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
- Department of Nuclear Medicine, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13385 Marseille, France
| |
Collapse
|