1
|
Li B, Zhou Y, Wen L, Yang B, Farag MA, Jiang Y. The occurrence, role, and management strategies for phytic acid in foods. Compr Rev Food Sci Food Saf 2024; 23:e13416. [PMID: 39136997 DOI: 10.1111/1541-4337.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024]
Abstract
Phytic acid, a naturally occurring compound predominantly found in cereals and legumes, is the focus of this review. This review investigates its distribution across various food sources, elucidating its dual roles in foods. It also provides new insights into the change in phytic acid level during food storage and the evolving trends in phytic acid management. Although phytic acid can function as a potent color stabilizer, flavor enhancer, and preservative, its antinutritional effects in foods restrict its applications. In terms of management strategies, numerous treatments for degrading phytic acid have been reported, each with varying degradation efficacies and distinct mechanisms of action. These treatments encompass traditional methods, biological approaches, and emerging technologies. Traditional processing techniques such as soaking, milling, dehulling, heating, and germination appear to effectively reduce phytic acid levels in processed foods. Additionally, fermentation and phytase hydrolysis demonstrated significant potential for managing phytic acid in food processing. In the future, genetic modification, due to its high efficiency and minimal environmental impact, should be prioritized to downregulate the biosynthesis of phytic acid. The review also delves into the biosynthesis and metabolism of phytic acid and elaborates on the mitigation mechanism of phytic acid using biotechnology. The challenges in the application of phytic acid in the food industry were also discussed. This study contributes to a better understanding of the roles phytic acid plays in food and the sustainability and safety of the food industry.
Collapse
Affiliation(s)
- Bailin Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yijie Zhou
- Guangdong AIB Polytechnic, Guangzhou, China
| | - Lingrong Wen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Narayanan M, Suresh K, Obaid SA, Alagarsamy P, Nguyen CK. Statistical optimized production of Phytase from Hanseniaspora guilliermondii S1 and studies on purification, homology modelling and growth promotion effect. ENVIRONMENTAL RESEARCH 2024; 252:118898. [PMID: 38614199 DOI: 10.1016/j.envres.2024.118898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
This investigation was performed to obtain a promising phytase enzyme producing yeast. In this regard, the PSM was used to isolate the phytase-producing Hanseniaspora guilliermondii S1 (MG663578) from sugarcane juice. The SSF optimum conditions for phytase generation were optimized using (OVAT) one-variable-at-a-time strategy using both Box-Behnken design and shake flask method (g/100 ml: 0.05 yeast extract, 0.15 Peptone, 0.05 malt extract 0.50 dextrose, pH 5.8 and 28ᵒC). The protein model developed was shown to be adequate for phytase production (91% accuracy), with the greatest phytase productivity in shake flask with substrate jack fruit seed powder being 395 ± 0.43 U/ml compared to 365U/ml for the BBD projected value. Crude Phytase was partially purified with a protein recovery of 43%, revealing a molecular weight of 120 kDa. It had an enzyme kinetic value of Km 3.3 mM and a Vmax of 19.1 mol/min. The 3D structure of PhyS1 amino acid sequences (PhyS1. B99990002) was simulated using Modeler 9.23, and the validated result revealed that 86.7% were in the favored region by Ramachandran plot. The SAVES server verified the 3D PDB file as satisfactory, and the model (in.pdb format) was uploaded in the PMDB database with the accession number ID: PM0082974. At the lab level, Hanseniaspora guilliermondii S1 (MG663578) producing phytase exhibited successful plant growth promotion activity in Ragi - CO 19 (Eleusine coracana L.) and Rice -Navarai - IR 64 (Oryza sativa L.). As a result, a phytase-based formulation for sustainable agriculture must be developed and tested on a large scale in diverse geographical areas of agricultural lands to determine its effect and potential on plant development.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Department of Research and Innovations, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai, 602 105, Tamil Nadu, India.
| | - K Suresh
- Department of Biotechnology, MGR College of Arts and Science, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamil Nadu, India.
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | | | - Cong-Kinh Nguyen
- General Department, College of Medicine and Pharmacy, Duy Tan University, Da Nang, 550000, Viet Nam
| |
Collapse
|
3
|
Maulana H, Widyastuti Y, Herlina N, Hasbuna A, Al-Islahi ASH, Triratna L, Mayasari N. Bioinformatics study of phytase from Aspergillus niger for use as feed additive in livestock feed. J Genet Eng Biotechnol 2023; 21:142. [PMID: 38008870 PMCID: PMC10678861 DOI: 10.1186/s43141-023-00600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Phytase supplementation in rations can reduce their phytic acid composition in order to enhance their nutritional value. Aspergillus niger is a fungus that can encode phytase. This study aims to determine the characteristics of its DNA sequences and amino acid composition that encode the phytase enzyme, as well as to determine the primer designs. METHOD This study used gene sequence data and protein-encoding phytase from Aspergillus niger that was collected manually from NCBI and PDB. The data was analyzed using SPDBV and then be aligned using the ClustalW Multiple Alignment features. The phylogenetic tree was built by Mega11 software. Primers were designed from selected candidate sequences that were analyzed. The designed primers were then simulated for PCR using FastPCR and SnapGene software. RESULTS There are 18 Aspergillus niger phytases in NCBI which is 14.87% of the total Aspergillus. There are 14 Aspergillus niger phytases that have identity above 95%. Aspergillus niger 110. M94550.1 is the closest strain to the PDB template. Candidate sources of phytase genes are Aspergillus niger 110.M94550.1, 48.2.BCMY01000003.1, and 92.JQ654450.1. The primer design has 2 possibilities of self-annealing and high melting temperature on the reverse primer. PCR simulation shows that the primer design can attach completely but still has the possibility of mispriming. CONCLUSION This study suggests promising results for the future development of phytase enzyme production from Aspergillus niger as a feed additive using genetic engineering to enhance the quality of livestock feed in Indonesia.
Collapse
Affiliation(s)
- Hamdan Maulana
- Faculty of Animal Husbandry, Department of Nutrition and Feed Technology, Universitas Padjadjaran, 45363, Jatinangor, Sumedang, West Java, Indonesia
| | - Yantyati Widyastuti
- National Research and Innovation Agency (BRIN), Research Center for Applied Microbiology, 16911, Cibinong, Bogor, West Java, Indonesia
| | - Nina Herlina
- National Research and Innovation Agency (BRIN), Research Center for Applied Microbiology, 16911, Cibinong, Bogor, West Java, Indonesia
| | - Abun Hasbuna
- Faculty of Animal Husbandry, Department of Nutrition and Feed Technology, Universitas Padjadjaran, 45363, Jatinangor, Sumedang, West Java, Indonesia
| | | | - Lita Triratna
- National Research and Innovation Agency (BRIN), Research Center for Applied Microbiology, 16911, Cibinong, Bogor, West Java, Indonesia
| | - Novi Mayasari
- Faculty of Animal Husbandry, Department of Nutrition and Feed Technology, Universitas Padjadjaran, 45363, Jatinangor, Sumedang, West Java, Indonesia.
| |
Collapse
|
4
|
Elizabeth George S, Wan Y. Microbial functionalities and immobilization of environmental lead: Biogeochemical and molecular mechanisms and implications for bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131738. [PMID: 37285788 PMCID: PMC11249206 DOI: 10.1016/j.jhazmat.2023.131738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
The increasing environmental and human health concerns about lead in the environment have stimulated scientists to search for microbial processes as innovative bioremediation strategies for a suite of different contaminated media. In this paper, we provide a compressive synthesis of existing research on microbial mediated biogeochemical processes that transform lead into recalcitrant precipitates of phosphate, sulfide, and carbonate, in a genetic, metabolic, and systematics context as they relate to application in both laboratory and field immobilization of environmental lead. Specifically, we focus on microbial functionalities of phosphate solubilization, sulfate reduction, and carbonate synthesis related to their respective mechanisms that immobilize lead through biomineralization and biosorption. The contributions of specific microbes, both single isolates or consortia, to actual or potential applications in environmental remediation are discussed. While many of the approaches are successful under carefully controlled laboratory conditions, field application requires optimization for a host of variables, including microbial competitiveness, soil physical and chemical parameters, metal concentrations, and co-contaminants. This review challenges the reader to consider bioremediation approaches that maximize microbial competitiveness, metabolism, and the associated molecular mechanisms for future engineering applications. Ultimately, we outline important research directions to bridge future scientific research activities with practical applications for bioremediation of lead and other toxic metals in environmental systems.
Collapse
Affiliation(s)
- S Elizabeth George
- US EPA Office of Research and Development, Center for Environmental Measurement and Modeling, Gulf Ecosystem Measurement and Modeling Division, One Sabine Island Drive, Gulf Breeze, FL 32561, USA
| | - Yongshan Wan
- US EPA Office of Research and Development, Center for Environmental Measurement and Modeling, Gulf Ecosystem Measurement and Modeling Division, One Sabine Island Drive, Gulf Breeze, FL 32561, USA.
| |
Collapse
|
5
|
Rizwanuddin S, Kumar V, Singh P, Naik B, Mishra S, Chauhan M, Saris PEJ, Verma A, Kumar V. Insight into phytase-producing microorganisms for phytate solubilization and soil sustainability. Front Microbiol 2023; 14:1127249. [PMID: 37113239 PMCID: PMC10128089 DOI: 10.3389/fmicb.2023.1127249] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/10/2023] [Indexed: 04/29/2023] Open
Abstract
The increasing demand for food has increased dependence on chemical fertilizers that promote rapid growth and yield as well as produce toxicity and negatively affect nutritional value. Therefore, researchers are focusing on alternatives that are safe for consumption, non-toxic, cost-effective production process, and high yielding, and that require readily available substrates for mass production. The potential industrial applications of microbial enzymes have grown significantly and are still rising in the 21st century to fulfill the needs of a population that is expanding quickly and to deal with the depletion of natural resources. Due to the high demand for such enzymes, phytases have undergone extensive research to lower the amount of phytate in human food and animal feed. They constitute efficient enzymatic groups that can solubilize phytate and thus provide plants with an enriched environment. Phytases can be extracted from a variety of sources such as plants, animals, and microorganisms. Compared to plant and animal-based phytases, microbial phytases have been identified as competent, stable, and promising bioinoculants. Many reports suggest that microbial phytase can undergo mass production procedures with the use of readily available substrates. Phytases neither involve the use of any toxic chemicals during the extraction nor release any such chemicals; thus, they qualify as bioinoculants and support soil sustainability. In addition, phytase genes are now inserted into new plants/crops to enhance transgenic plants reducing the need for supplemental inorganic phosphates and phosphate accumulation in the environment. The current review covers the significance of phytase in the agriculture system, emphasizing its source, action mechanism, and vast applications.
Collapse
Affiliation(s)
- Sheikh Rizwanuddin
- Department Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Pallavi Singh
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Bindu Naik
- Department Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, India
- *Correspondence: Bindu Naik,
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura, India
| | - Mansi Chauhan
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Per Erik Joakim Saris,
| | - Ankit Verma
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| |
Collapse
|
6
|
Sun N, Liang C, Zhang Q, Geng X, Liu H, Feng Y, Yang H, Yu Z, Jia X. Safety assessment of phytase transgenic maize 11TPY050 in Sprague-Dawley rats by 90-day feeding study. Regul Toxicol Pharmacol 2021; 128:105091. [PMID: 34863905 DOI: 10.1016/j.yrtph.2021.105091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/20/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
The present study aimed to evaluate the subchronic toxicity of feeding with phytase-transgenic maize line 11TPY050 in Sprague-Dawley (SD) rats. Rats (n = 10/sex/group) were fed with 12.5%, 25% or 50% (w/w) transgenic maize diet, 12.5%, 25% or 50% (w/w) non-transgenic isoline OSL940 maize diet, or 50% (w/w) commercially available Zhengdan958 maize diet for 90 days. Daily clinical observations and weekly measurements of body weights and food consumption were conducted. Blood samples were collected on day 46 and day 91 for hematology and clinical chemistry evaluations. At the end of the study, macroscopic and microscopic examinations were performed. No effects on body weight and food consumption were observed. The results of hematology, clinical chemistry, and absolute and relative organ weights in the transgenic maize group were comparable to those in the parental maize group. Several statistical differences were not dose-related and were not considered to be biologically significant. Furthermore, the terminal necropsy and histopathological examination showed no treatment-related changes among the groups. The results from the present 90-day feeding study of phytase-transgenic maize 11TPY050 indicated no unexpected adverse effects in SD rats. The phytase transgenic maize 11TPY050 has substantial equivalence with non-transgenic maize.
Collapse
Affiliation(s)
- Nana Sun
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Chunlai Liang
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Qiannan Zhang
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xue Geng
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Haibo Liu
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yongquan Feng
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Hui Yang
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Zhou Yu
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Xudong Jia
- NHC Key Laboratory of Food Safety Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| |
Collapse
|
7
|
Mrudula Vasudevan U, Jaiswal AK, Krishna S, Pandey A. Thermostable phytase in feed and fuel industries. BIORESOURCE TECHNOLOGY 2019; 278:400-407. [PMID: 30709763 DOI: 10.1016/j.biortech.2019.01.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Phytase with wide ranging biochemical properties has long been utilized in a multitude of industries, even so, thermostability plays a crucial factor in choosing the right phytase in a few of the sectors. Mesophilic phytases are not considered to be a viable option in the feed industry owing to its limited stability in the required feed processing temperature. In the recent past, inclusion of thermostable phytase in fuel ethanol production from starch based raw material has been demonstrated with economic benefits. Therefore, considerable emphasis has been placed on using complementary approaches such as mining of extremophilic microbial wealth, encapsulation and using enzyme engineering for obtaining stable phytase variants. This article means to give an insight on role of thermostable phytases in feed and fuel industries and methods for its development, highlighting molecular determinants of thermostability.
Collapse
Affiliation(s)
- Ushasree Mrudula Vasudevan
- Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Cathal Brugha Street, Dublin 1, Ireland
| | - Shyam Krishna
- MIMS Research Foundation, Calicut 673 007, Kerala, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| |
Collapse
|