1
|
Gama-Cuellar AG, Díaz KP, Calleja MM, Saavedra GA, Ramírez-Amador V, Corro JR, Ramón-Ramírez V, Albuquerque-Júnior RL, Gondak R. Impaired intratumoral dendritic cell function and potential predictive value of dendritic cell markers for metastasis in malignant salivary gland tumors. Med Oral Patol Oral Cir Bucal 2024; 29:e273-e279. [PMID: 37992142 PMCID: PMC10945878 DOI: 10.4317/medoral.26248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/09/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The differentiation between primary and metastatic salivary gland neoplasms (SGNs) helps in determining appropriate management strategies, including the need for additional diagnostic tests, surveillance, or aggressive treatment. The purpose of this study was to identify and quantify the immature and mature dendritic cells (DCs) in metastatic and no metastatic SGNs and determine its association with clinicopathological findings. MATERIAL AND METHODS Cross-sectional, observational, and descriptive study that includes 33 malignant salivary gland neoplasms [MSGN (6, 18.1% metastatic)], and 22 pleomorphic adenomas (PA), as a control group. Clinical and histopathological characteristics were obtained. Immunohistochemistry for human leukocyte antigen D-related (HLA-DR), CD1a, CD83, and Ki-67 proteins was done. Positive intra- and peritumoral DCs were counted. RESULTS Individuals with MSGN had a lower density of intratumoral HLA-DR+ cells than those with PA (p=0.001), Ki-67 immunostaining was significantly higher in MSGN than in PA (6% vs. 1.4%, p<0.001). Metastatic MSGN showed less intratumoral CD1a+ than non-metastatic (3.2 vs. 165.1, p=0.001). No differences in intra- and peritumoral CD83+ cells were found between benign and malignant SGN. CONCLUSIONS These results suggest that the immune-protective function of intratumoral DCs is compromised in MSGNs. DCs markers may represent useful prediction tools for metastases in salivary gland malignancies, with crucial implications in the implementation of appropriate disease management strategies.
Collapse
Affiliation(s)
- A-G Gama-Cuellar
- Universidade Federal de Santa Catarina UFSC, Departmento de Patologia Delfino Conti St. Trindade Post code: 88040-370. Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Sverchkova A, Burkholz S, Rubsamen R, Stratford R, Clancy T. Integrative HLA typing of tumor and adjacent normal tissue can reveal insights into the tumor immune response. BMC Med Genomics 2024; 17:37. [PMID: 38281021 PMCID: PMC10821267 DOI: 10.1186/s12920-024-01808-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND The HLA complex is the most polymorphic region of the human genome, and its improved characterization can help us understand the genetics of human disease as well as the interplay between cancer and the immune system. The main function of HLA genes is to recognize "non-self" antigens and to present them on the cell surface to T cells, which instigate an immune response toward infected or transformed cells. While sequence variation in the antigen-binding groove of HLA may modulate the repertoire of immunogenic antigens presented to T cells, alterations in HLA expression can significantly influence the immune response to pathogens and cancer. METHODS RNA sequencing was used here to accurately genotype the HLA region and quantify and compare the level of allele-specific HLA expression in tumors and patient-matched adjacent normal tissue. The computational approach utilized in the study types classical and non-classical Class I and Class II HLA alleles from RNA-seq while simultaneously quantifying allele-specific or personalized HLA expression. The strategy also uses RNA-seq data to infer immune cell infiltration into tumors and the corresponding immune cell composition of matched normal tissue, to reveal potential insights related to T cell and NK cell interactions with tumor HLA alleles. RESULTS The genotyping method outperforms existing RNA-seq-based HLA typing tools for Class II HLA genotyping. Further, we demonstrate its potential for studying tumor-immune interactions by applying the method to tumor samples from two different subtypes of breast cancer and their matched normal breast tissue controls. CONCLUSIONS The integrative RNA-seq-based HLA typing approach described in the study, coupled with HLA expression analysis, neoantigen prediction and immune cell infiltration, may help increase our understanding of the interplay between a patient's tumor and immune system; and provide further insights into the immune mechanisms that determine a positive or negative outcome following treatment with immunotherapy such as checkpoint blockade.
Collapse
Affiliation(s)
- Angelina Sverchkova
- NEC OncoImmunity, Oslo Cancer Cluster, Innovation Park, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Scott Burkholz
- Flow Pharma, Inc, Warrensville Heights, Galaxy Parkway, OH, 4829, USA
| | - Reid Rubsamen
- Flow Pharma, Inc, Warrensville Heights, Galaxy Parkway, OH, 4829, USA
- University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
- Case Western Reserve School of Medicine, Cleveland, OH, USA
| | - Richard Stratford
- NEC OncoImmunity, Oslo Cancer Cluster, Innovation Park, Oslo, Norway
| | - Trevor Clancy
- NEC OncoImmunity, Oslo Cancer Cluster, Innovation Park, Oslo, Norway.
| |
Collapse
|
3
|
Neves RL, Marem A, Carmona B, Arata JG, Cyrillo Ramos MP, Justo GZ, Machado de Melo FH, Oliveira V, Icimoto MY. Expression of thimet oligopeptidase (THOP) modulated by oxidative stress in human multidrug resistant (MDR) leukemia cells. Biochimie 2023; 212:21-30. [PMID: 36997147 DOI: 10.1016/j.biochi.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Thimet oligopeptidase (THOP) is a cytosolic metallopeptidase known to regulate the fate of post-proteasomal peptides, protein turnover and peptide selection in the antigen presentation machinery (APM) system. Oxidative stress influences THOP expression and regulates its proteolytic activity, generating variable cytosolic peptide levels, possibly affecting the immune evasion of tumor cells. In the present work, we examined the association between THOP expression/activity and stress oxidative resistance in human leukemia cells using the K562 cell line, a chronic myeloid leukemia (CML), and the multidrug-resistant (MDR) Lucena 1 (K562-derived MDR cell line) as model. The Lucena 1 phenotype was validated under vincristine treatment and the relative THOP1 mRNA levels and protein expression compared to K562 cell line. Our data demonstrated increased THOP1 gene and protein levels in K562 cells in contrast to the oxidative-resistant Lucena 1, even after H2O2 treatment, suggesting an oxidative stress dependence in THOP regulation. Further, it was observed higher basal levels of reactive oxygen species (ROS) in K562 compared to Lucena 1 cell line using DHE fluorescent probe. Since THOP activity is dependent on its oligomeric state, we also compared its proteolytic activity under reducing agent treatment, which demonstrated that its function modulation with respect to changes in redox state. Finally, the mRNA expression and FACS analyses demonstrated a reduced expression of MHC I only in K562 cell line. In conclusion, our results highlight THOP redox modulation, which could influence antigen presentation in multidrug resistant leukemia cells.
Collapse
Affiliation(s)
- Raquel Leão Neves
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Alyne Marem
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Bruno Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Júlia Galanakis Arata
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Giselle Zenker Justo
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil; Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | | | - Vitor Oliveira
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.
| | - Marcelo Yudi Icimoto
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil; Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, United States.
| |
Collapse
|
4
|
Liu Q, Tian Y, Li Y, Zhang W, Cai W, Liu Y, Ren Y, Liang Z, Zhou P, Zhang Y, Bao Y, Li Y. In vivo therapeutic effects of affinity-improved-TCR engineered T-cells on HBV-related hepatocellular carcinoma. J Immunother Cancer 2021; 8:jitc-2020-001748. [PMID: 33323464 PMCID: PMC7745518 DOI: 10.1136/jitc-2020-001748] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background In patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), virus-specific cytotoxic T lymphocytes (CTLs) fail to eliminate HCC cells expressing HBV antigens. As the expression of viral antigen in HBV-associated HCC may decrease to allow tumor to escape immune attacks, we hypothesized that an HBV surface antigen (HBsAg)-specific affinity-improved-T-cell receptor (TCR) will enable T cells to target HCC more effectively than corresponding wild-type-TCR. We also postulated that TCR promiscuity can be exploited to efficiently capture HBV variants that can hinder CTL-based therapeutics. Methods We applied flexi-panning to isolate affinity-improved TCRs binding to a variant antigen, the human leukocyte antigen (HLA)-A*02:01-restricted nonapeptide HBs371-379-ILSPFLPLL, from libraries constructed with a TCR cloned using the decapeptide HBs370-379-SIVSPFIPLL. The potency and safety of the affinity-improved-TCR engineered T-cells (Ai-TCR-T) were verified with potentially cross-reactive human and HBV-variant peptides, tumor and normal cells, and xenograft mouse models. Results Ai-TCR-T cells retained cognate HBV antigen specificity and recognized a wide range of HBV genotypic variants with improved sensitivity and cytotoxicity. Cell infusions produced complete elimination of HCC without recurrence in the xenograft mouse models. Elevated accumulation of CD8+ Ai-TCR-T cells in tumors correlated with tumor shrinkage. Conclusion The in vitro and in vivo studies demonstrated that HBsAg-specific Ai-TCR-T cells had safety profiles similar to those of their wild-type counterparts and significantly enhanced potency. This study presents an approach to develop new therapeutic strategies for HBV-related HCC.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Ye Tian
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Yanyan Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Wei Zhang
- Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Hefei, Anhui, China
| | - Wenxuan Cai
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Yaju Liu
- Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Hefei, Anhui, China
| | - Yuefei Ren
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhaoduan Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Peipei Zhou
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Yajing Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Yifeng Bao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Yi Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China .,University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|