1
|
Xie F, Hao Y, Liu Y, Bao J, Wang R, Chi X, Wang T, Yu S, Jin Y, Li L, Jiang Y, Zhang D, Yan L, Ni T. From Synergy to Monotherapy: Discovery of Novel 2,4,6-Trisubstituted Triazine Hydrazone Derivatives with Potent Antifungal Potency In Vitro and In Vivo. J Med Chem 2024; 67:4007-4025. [PMID: 38381075 DOI: 10.1021/acs.jmedchem.3c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Invasive fungal infections pose a serious threat to public health and are associated with high mortality and incidence rates. The development of novel antifungal agents is urgently needed. Based on hit-to-lead optimization, a series of 2,4,6-trisubstituted triazine hydrazone compounds were designed, synthesized, and biological evaluation was performed, leading to the identification of compound 28 with excellent in vitro synergy (FICI range: 0.094-0.38) and improved monotherapy potency against fluconazole-resistant Candida albicans and Candida auris (MIC range: 1.0-16.0 μg/mL). Moreover, 28 exhibited broad-spectrum antifungal activity against multiple pathogenic strains. Furthermore, 28 could inhibit hyphal and biofilm formation, which may be related to its ability to disrupt the fungal cell wall. Additionally, 28 significantly reduced the CFU in a mouse model of disseminated infection with candidiasis at a dose of 10 mg/kg. Overall, the triazine-based hydrazone compound 28 with low cytotoxicity, hemolysis, and favorable ADME/T characteristics represents a promising lead to further investigation.
Collapse
Affiliation(s)
- Fei Xie
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Yumeng Hao
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Yu Liu
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Junhe Bao
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Ruina Wang
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Xiaochen Chi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang 110016, China
| | - Ting Wang
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Shichong Yu
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Yongsheng Jin
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai 200072, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai 200072, China
| | - Dazhi Zhang
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai 200072, China
| | - Lan Yan
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai 200072, China
| |
Collapse
|
2
|
Khalil AF, El-Moselhy TF, El-Bastawissy EA, Abdelhady R, Younis NS, El-Hamamsy MH. Discovery of novel enasidenib analogues targeting inhibition of mutant isocitrate dehydrogenase 2 as antileukaemic agents. J Enzyme Inhib Med Chem 2023; 38:2157411. [PMID: 36629449 PMCID: PMC9848300 DOI: 10.1080/14756366.2022.2157411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mutant isocitrate dehydrogenase (IDH) 2 "IDH2m" acquires a neo-enzymatic activity reducing α-ketoglutarate to an oncometabolite, D-2-hydroxyglutarate (2-HG). Three s-triazine series were designed and synthesised using enasidenib as a lead compound. In vitro anticancer screening via National Cancer Institute "NCI" revealed that analogues 6a, 6c, 6d, 7g, and 7l were most potent, with mean growth inhibition percentage "GI%" = 66.07, 66.00, 53.70, 35.10, and 81.15, respectively, followed by five-dose screening. Compounds 6c, 6e, and 7c were established as the best IDH2R140Q inhibitors compared to enasidenib, reporting IC50 = 101.70, 67.01, 88.93, and 75.51 nM, respectively. More importantly, 6c, 6e, and 7c displayed poor activity against the wild-type IDH2, IC50 = 2928, 2295, and 3128 nM, respectively, which implementing high selectivity and accordingly safety. Furthermore, 6c was screened for cell cycle arrest, apoptosis induction, and western blot analysis. Finally, computational tools were applied to predict physicochemical properties and binding poses in IDH2R140Q allosteric site.
Collapse
Affiliation(s)
- Ahmed F. Khalil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt,CONTACT A. F. Khalil Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Tarek F. El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Eman A. El-Bastawissy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Rasha Abdelhady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Nancy S. Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf, Saudi Arabia
| | - Mervat H. El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Synthesis of New S-Triazine Bishydrazino and Bishydrazido-Based Polymers and Their Application in Flame-Retardant Polypropylene Composites. Polymers (Basel) 2022; 14:polym14040784. [PMID: 35215696 PMCID: PMC8876278 DOI: 10.3390/polym14040784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
In this study six new s-triazine bishydrazino and bishydrazido-based polymers were synthesized via condensation of bishydrazino s-triazine derivatives with terephthaldehyde or via nucleophilic substitution of dichloro-s-triazine derivatives with terephthalic acid hydrazide. The synthesized polymers were characterized by different techniques. The new polymers displayed good thermal behavior with great values in terms of limited oxygen indexed (LOI) 27.50%, 30.12% for polymers 5b,c (bishydrazino-s-triazine based polymers) and 27.23%, 29.86%, 30.85% for polymers 7a–c (bishydrazido-s-triazine based polymers) at 800 °C. Based on the LOI values, these polymers could be classified as flame retardant and self-extinguishing materials. The thermal results also revealed that the type of substituent groups on the triazine core has a considerable impact on their thermal behavior. Accordingly, the prepared polymers were mixed with ammonium polyphosphate (APP) in different proportions to form an intumescent flame-retardant (IFRs) system and were introduced into polypropylene (PP) to improve the flame-retardancy of the composites. The best results were obtained with a mass ratio of APP: 5a–c or 7a–c of 2:1, according to the vertical burning study (UL-94). In addition, the presence of 25% “weight ratio” of IFR in the composite showed great impact and passed UL-94 V-0 and V-1 tests.
Collapse
|
4
|
Al-Rasheed HH, Mohammady SZ, Dahlous K, Siddiqui MRH, El-Faham A. Synthesis, characterization, thermal stability and kinetics of thermal degradation of novel polymers based-s-triazine Schiff base. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1961-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Synthesis, X-Ray Crystal Structures, and Preliminary Antiproliferative Activities of New s-Triazine-hydroxybenzylidene Hydrazone Derivatives. J CHEM-NY 2019. [DOI: 10.1155/2019/9403908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We herein report a new small library of Schiff-base compounds that encompasses s-triazine and (2 or 4)-hydroxylbenzylidene derivatives. These compounds were synthesized through a hydrazone linkage connecting both the s-triazine and hydroxybenzylidene derivatives. The synthetic strategy adopted allowed the synthesis of the target compounds with excellent yields and purities as observed from their NMR (1H and 13C) and elemental analysis. Furthermore, 4f, 5b, and 5f were further confirmed by X-ray single crystal diffraction technique. The preliminary antiproliferative activities for the synthesized compounds were tested against two different cancer cell lines including breast cancer (MCF-7) and colon cancer (HCT-116). From the eighteen compounds, which have been examined, only two derivatives having piperidine moiety showed more selectivity against the two cell lines MCF-7 and HCT-116, while the others showed very weak activity. The position of the hydroxyl group in the benzylidine ring and the substituent on the s-triazine moiety has great effect on the activity of the prepared compounds. The IC50 values for the two derivatives 4a and 5a evaluated against breast cancer cells, very close to those for the chemotherapeutic drug cisplatin, are 27 µM (13.3 µg/mL), 17 µM (8.4 µg/mL), and 20 µM (6 µg/mL) for 4a, 5a, and cisplatin, respectively. These results propose the preliminary antiproliferative activity of these two derivatives may deserve further consideration for development of new derivatives as potent anticancer agents.
Collapse
|
6
|
Custodio JMF, Ternavisk RR, Ferreira CJS, Figueredo AS, Aquino GLB, Napolitano HB, Valverde C, Baseia B. Using the Supermolecule Approach To Predict the Nonlinear Optics Potential of a Novel Asymmetric Azine. J Phys Chem A 2018; 123:153-162. [PMID: 30561204 DOI: 10.1021/acs.jpca.8b07872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organic molecules with electron acceptors or withdrawal substituents terminal at π-conjugated system are promising candidates to be explored as materials with high linear and nonlinear optical properties. On the basis of these features, a novel asymmetric azine ( 7E, 8E)-2-(3-methoxy-4-hydroxy-benzylidene)-1-(4-nitrobenzylidene)hydrazineC15H13N3O4 (NMZ) was synthesized. The molecular structure of NMZ was elucidated by X-ray crystallography and the supramolecular arrangement was analyzed from Hirshfeld surface methodology. An iterative electrostatic scheme using a super molecule approach, where neighboring molecules are represented by charge points, was employed to investigate optical dipole moment (μ), the linear polarization (α) and the first (β) and second (γ) hyperpolarizabilities. The NMZ crystallized in the centrosymetric space group P21/n and packs via combined O-H···O, C-H···O, and N···π interactions. The macroscopic property of third order χ(3) found for the NMZ is 298.62 times greater than values reported for chalcone derivative (2 E)-1-(3-bromophenyl)-3-[4 (methylsulfanyl)phenyl]prop-2-en-1-one. The results for NMZ indicate a good nonlinear optical effect.
Collapse
Affiliation(s)
- Jean M F Custodio
- Instituto de Quimica , Universidade Federal de Goiás , Goiânia , GO 74.690-900 , Brazil
| | - Ricardo R Ternavisk
- Grupo de Quı́mica Teórica e Estrutural de Anápolis , Universidade Estadual de Goiás , Anápolis , GO 75.132-903 , Brazil.,Instituto de Ciências Exatas e Tecnologia (ICET) , Universidade Paulista , Goiânia , GO 74.845-090 , Brazil
| | - Cristino J S Ferreira
- Departamento de Fı́sica , Universidade Federal da Paraíba , João Pessoa , PB , 58.051-970, Brazil
| | - Andreza S Figueredo
- Grupo de Quı́mica Teórica e Estrutural de Anápolis , Universidade Estadual de Goiás , Anápolis , GO 75.132-903 , Brazil
| | - Gilberto L B Aquino
- Grupo de Quı́mica Teórica e Estrutural de Anápolis , Universidade Estadual de Goiás , Anápolis , GO 75.132-903 , Brazil
| | - Hamilton B Napolitano
- Grupo de Quı́mica Teórica e Estrutural de Anápolis , Universidade Estadual de Goiás , Anápolis , GO 75.132-903 , Brazil
| | - Clodoaldo Valverde
- Grupo de Quı́mica Teórica e Estrutural de Anápolis , Universidade Estadual de Goiás , Anápolis , GO 75.132-903 , Brazil.,Instituto de Ciências Exatas e Tecnologia (ICET) , Universidade Paulista , Goiânia , GO 74.845-090 , Brazil
| | - Basílio Baseia
- Instituto de Ciências Exatas e Tecnologia (ICET) , Universidade Paulista , Goiânia , GO 74.845-090 , Brazil.,Departamento de Fı́sica , Universidade Federal da Paraíba , João Pessoa , PB , 58.051-970, Brazil
| |
Collapse
|