1
|
Seitz S, Schuster-Amft C, Wandel J, Bonati LH, Parmar K, Gerth HU, Behrendt F. Effect of concurrent action observation, peripheral nerve stimulation and motor imagery on dexterity in patients after stroke: a pilot study. Sci Rep 2024; 14:14858. [PMID: 38937566 PMCID: PMC11211322 DOI: 10.1038/s41598-024-65911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
Research to improve and expand treatment options for motor impairment after stroke remains an important issue in rehabilitation as the reduced ability to move affected limbs is still a limiting factor in the selection of training content for stroke patients. The combination of action observation and peripheral nerve stimulation is a promising method for inducing increased excitability and plasticity in the primary motor cortex of healthy subjects. In addition, as reported in the literature, the use of action observation and motor imagery in conjunction has an advantage over the use of one or the other alone in terms of the activation of motor-related brain regions. The aim of the pilot study was thus to combine these findings into a multimodal approach and to evaluate the potential impact of the concurrent application of the three methods on dexterity in stroke patients. The paradigm developed accordingly was tested with 10 subacute patients, in whom hand dexterity, thumb-index pinch force and thumb tapping speed were measured for a baseline assessment and directly before and after the single intervention. During the 10-min session, patients were instructed to watch a repetitive thumb-index finger tapping movement displayed on a monitor and to imagine the sensations that would arise from physically performing the same motion. They were also repeatedly electrically stimulated at the wrist on the motorically more affected body side and asked to place their hand behind the monitor for the duration of the session to support integration of the displayed hand into their own body schema. The data provide a first indication of a possible immediate effect of a single application of this procedure on the dexterity in patients after stroke.
Collapse
Affiliation(s)
- Sarina Seitz
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
- Institute of Physiotherapy, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Corina Schuster-Amft
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- School of Engineering and Computer Science, Bern University of Applied Sciences, Biel, Switzerland
| | - Jasmin Wandel
- Institute for Optimization and Data Analysis, Bern University of Applied Sciences, Biel, Switzerland
| | - Leo H Bonati
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Katrin Parmar
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Hans Ulrich Gerth
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
- Department of Medicine, University Hospital Münster, Münster, Germany
| | - Frank Behrendt
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland.
- School of Engineering and Computer Science, Bern University of Applied Sciences, Biel, Switzerland.
| |
Collapse
|
2
|
Swanson CW, Vial SE, Manini TM, Sibille KT, Clark DJ. Protocol for a home-based self-delivered prehabilitation intervention to proactively reduce fall risk in older adults: a pilot randomized controlled trial of transcranial direct current stimulation and motor imagery. Pilot Feasibility Stud 2024; 10:89. [PMID: 38877595 PMCID: PMC11177485 DOI: 10.1186/s40814-024-01516-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Several changes occur in the central nervous system with increasing age that contribute toward declines in mobility. Neurorehabilitation has proven effective in improving motor function though achieving sustained behavioral and neuroplastic adaptations is more challenging. While effective, rehabilitation usually follows adverse health outcomes, such as injurious falls. This reactive intervention approach may be less beneficial than prevention interventions. Therefore, we propose the development of a prehabilitation intervention approach to address mobility problems before they lead to adverse health outcomes. This protocol article describes a pilot study to examine the feasibility and acceptability of a home-based, self-delivered prehabilitation intervention that combines motor imagery (mentally rehearsing motor actions without physical movement) and neuromodulation (transcranial direct current stimulation, tDCS; to the frontal lobes). A secondary objective is to examine preliminary evidence of improved mobility following the intervention. METHODS This pilot study has a double-blind randomized controlled design. Thirty-four participants aged 70-95 who self-report having experienced a fall within the prior 12 months or have a fear of falling will be recruited. Participants will be randomly assigned to either an active or sham tDCS group for the combined tDCS and motor imagery intervention. The intervention will include six 40-min sessions delivered every other day. Participants will simultaneously practice the motor imagery tasks while receiving tDCS. Those individuals assigned to the active group will receive 20 min of 2.0-mA direct current to frontal lobes, while those in the sham group will receive 30 s of stimulation to the frontal lobes. The motor imagery practice includes six instructional videos presenting different mobility tasks related to activities of daily living. Prior to and following the intervention, participants will undergo laboratory-based mobility and cognitive assessments, questionnaires, and free-living activity monitoring. DISCUSSION Previous studies report that home-based, self-delivered tDCS is safe and feasible for various populations, including neurotypical older adults. Additionally, research indicates that motor imagery practice can augment motor learning and performance. By assessing the feasibility (specifically, screening rate (per month), recruitment rate (per month), randomization (screen eligible who enroll), retention rate, and compliance (percent of completed intervention sessions)) and acceptability of the home-based motor imagery and tDCS intervention, this study aims to provide preliminary data for planning larger studies. TRIAL REGISTRATION This study is registered on ClinicalTrials.gov (NCT05583578). Registered October 13, 2022. https://www. CLINICALTRIALS gov/study/NCT05583578.
Collapse
Affiliation(s)
- Clayton W Swanson
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, 32603, USA.
| | - Sarah E Vial
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Todd M Manini
- Department of Health Outcomes & Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kimberly T Sibille
- Department of Physical Medicine and Rehabilitation, College of Medicine, University of Florida, Gainesville, FL, USA
| | - David J Clark
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, 32603, USA
| |
Collapse
|
3
|
Adamo P, Longhi G, Temporiti F, Marino G, Scalona E, Fabbri-Destro M, Avanzini P, Gatti R. Effects of Action Observation Plus Motor Imagery Administered by Immersive Virtual Reality on Hand Dexterity in Healthy Subjects. Bioengineering (Basel) 2024; 11:398. [PMID: 38671819 PMCID: PMC11048356 DOI: 10.3390/bioengineering11040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Action observation and motor imagery (AOMI) are commonly delivered through a laptop screen. Immersive virtual reality (VR) may enhance the observer's embodiment, a factor that may boost AOMI effects. The study aimed to investigate the effects on manual dexterity of AOMI delivered through immersive VR compared to AOMI administered through a laptop. To evaluate whether VR can enhance the effects of AOMI, forty-five young volunteers were enrolled and randomly assigned to the VR-AOMI group, who underwent AOMI through immersive VR, the AOMI group, who underwent AOMI through a laptop screen, or the control group, who observed landscape video clips. All participants underwent a 5-day treatment, consisting of 12 min per day. We investigated between and within-group differences after treatments relative to functional manual dexterity tasks using the Purdue Pegboard Test (PPT). This test included right hand (R), left hand (L), both hands (B), R + L + B, and assembly tasks. Additionally, we analyzed kinematics parameters including total and sub-phase duration, peak and mean velocity, and normalized jerk, during the Nine-Hole Peg Test to examine whether changes in functional scores may also occur through specific kinematic patterns. Participants were assessed at baseline (T0), after the first training session (T1), and at the end of training (T2). A significant time by group interaction and time effects were found for PPT, where both VR-AOMI and AOMI groups improved at the end of training. Larger PPT-L task improvements were found in the VR-AOMI group (d: 0.84, CI95: 0.09-1.58) compared to the AOMI group from T0 to T1. Immersive VR used for the delivery of AOMI speeded up hand dexterity improvements.
Collapse
Affiliation(s)
- Paola Adamo
- Physiotherapy Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Gianluca Longhi
- Physiotherapy Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Federico Temporiti
- Physiotherapy Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Giorgia Marino
- Physiotherapy Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Emilia Scalona
- Dipartimento di Scienze Medico Chirurgiche, Scienze Radiologiche e Sanità Pubblica (DSMC), Università Degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Brescia, Italy
| | - Maddalena Fabbri-Destro
- Consiglio Nazionale Delle Ricerche, Istituto di Neuroscienze, Via Volturno, 39-E, 43125 Parma, Parma, Italy
| | - Pietro Avanzini
- Consiglio Nazionale Delle Ricerche, Istituto di Neuroscienze, Via Volturno, 39-E, 43125 Parma, Parma, Italy
| | - Roberto Gatti
- Physiotherapy Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| |
Collapse
|
4
|
Binks JA, Wilson CJ, Van Schaik P, Eaves DL. Motor learning without physical practice: The effects of combined action observation and motor imagery practice on cup-stacking speed. PSYCHOLOGY OF SPORT AND EXERCISE 2023; 68:102468. [PMID: 37665909 DOI: 10.1016/j.psychsport.2023.102468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 09/06/2023]
Abstract
In this study we explored training effects for combined action observation and motor imagery (AO + MI) instructions on a complex cup-stacking task, without physical practice. Using a Graeco-Latin Square design, we randomly assigned twenty-six participants into four groups. This counterbalanced the within-participant factor of practice condition (AO + MI, AO, MI, Control) across four cup-stacking tasks, which varied in their complexity. On each of the three consecutive practice days participants experienced twenty trials under each of the three mental practice conditions. On each trial, a first-person perspective video depicted bilateral cup-stacking performed by an experienced model. During AO, participants passively observed this action, responding only to occasional colour cues. For AO + MI, participants imagined performing the observed action and synchronised their concurrent MI with the display. For MI, a sequence of pictures cued imagery of each stage of the task. Analyses revealed a significant main effect of practice condition both at the 'surprise' post-test (Day 3) and at the one-week retention test. At both time points movement execution times were significantly shorter for AO + MI compared with AO, MI and the Control. Execution times were also shorter overall at the retention compared with the post-test. These results demonstrate that a complex novel motor task can be acquired without physical training. Practitioners can therefore use AO + MI practice to supplement physical practice and optimise skill learning.
Collapse
Affiliation(s)
- J A Binks
- Department of Psychology, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, UK.
| | - C J Wilson
- Department of Psychology, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, UK
| | - P Van Schaik
- Department of Psychology, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, UK
| | - D L Eaves
- Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| |
Collapse
|
5
|
Bisio A, Biggio M, Canepa P, Faelli E, Ruggeri P, Avanzino L, Bove M. Primary motor cortex excitability as a marker of plasticity in a stimulation protocol combining action observation and kinesthetic illusion of movement. Eur J Neurosci 2021; 53:2763-2773. [PMID: 33539632 DOI: 10.1111/ejn.15140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
Action observation combined with proprioceptive stimulation able to induce a kinesthetic illusion of movement (AO-KI) was shown to elicit a plastic increase in primary motor cortex (M1) excitability, with promising applications in rehabilitative interventions. Nevertheless, the known individual variability in response to combined stimulation protocols limits its application. The aim of this study was to examine whether a relationship exists between changes in M1 excitability during AO-KI and the long-lasting changes in M1 induced by AO-KI. Fifteen volunteers received a conditioning protocol consisting in watching a video showing a thumb-opposition movement and a simultaneous proprioceptive stimulation that evoked an illusory kinesthetic experience of their thumbs closing. M1 excitability was evaluated by means of single-pulse transcranial magnetic stimulation before, DURING the conditioning protocol, and up to 60 min AFTER it was administered. M1 excitability significantly increased during AO-KI with respect to a rest condition. Furthermore, AO-KI induced a long-lasting increase in M1 excitability up to 60 min after administration. Finally, a significant positive correlation appeared between M1 excitability changes during and after AO-KI; that is, participants who were more responsive during AO-KI showed greater motor cortical activity changes after it. These findings suggest that M1 response during AO-KI can be considered a neurophysiological marker of individual responsiveness to the combined stimulation since it was predictive of its efficacy in inducing long-lasting M1 increase excitability. This information would allow knowing in advance whether an individual will be a responder to AO-KI.
Collapse
Affiliation(s)
- Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Monica Biggio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Patrizio Canepa
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
| | - Emanuela Faelli
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Piero Ruggeri
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
6
|
Canepa P, Sbragi A, Saino F, Biggio M, Bove M, Bisio A. Thinking Before Doing: A Pilot Study on the Application of Motor Imagery as a Learning Method During Physical Education Lesson in High School. Front Sports Act Living 2020; 2:550744. [PMID: 33345114 PMCID: PMC7739805 DOI: 10.3389/fspor.2020.550744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Motor imagery (MI), i. e., the mental simulation of an action without its actual execution, is a promising technique to boost motor learning via physical practice in rehabilitation, sport, and educational fields. The purpose of the present pilot study was to test the feasibility and the effectiveness of the application of MI as learning methodology place alongside conventional teaching technique as employed for physical education lessons. Thirty-three high school students from two classes were enrolled for instruction in the underhand serve in volleyball. One group, the motor imagery group (MIG) carried out the physical exercise along with the kinesthetic MI of the action, while the other group (the control group) was limited to the merely physical exercise. The training period lasted 8 weeks. MI duration and the duration of real movement (ME), the isochrony index (differences between real and imagined movements duration), and the number of balls which passed over the net (NBN) were evaluated before and after training. Results showed a significant improvement in the isochrony index for the MIG group exclusively; namely, MI duration became more similar to ME duration. Moreover, in MIG a significantly negative relationship appeared between the percentage change in the isochrony index and the difference between NBN before and after training. These findings suggest improvement in sensorimotor representation of the action, which lies at the basis of enhanced motor performance. The present study constitutes initial proof of concept on the application of MI as learning technique applicable to physical education lesson at high school.
Collapse
Affiliation(s)
- Patrizio Canepa
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Antonella Sbragi
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Filippo Saino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Monica Biggio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico, Genova, Italy
| | - Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| |
Collapse
|
7
|
Li J, Ying Y, Su F, Chen L, Yang J, Jia J, Jia X, Xu W. The Hua-Shan rehabilitation program after contralateral seventh cervical nerve transfer for spastic arm paralysis. Disabil Rehabil 2020; 44:404-411. [PMID: 32478582 DOI: 10.1080/09638288.2020.1768597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Purpose: To propose the novel Hua-Shan rehabilitation program for patients undergoing the contralateral seventh cervical nerve transfer, and explore the influence of different rehabilitation on the postoperative recovery.Materials and methods: The Hua-Shan program was established in consideration of the three elements: the nerve regeneration, brain plasticity and group therapy. Its effect was evaluated by comparing the postoperative recovery of the hemorrhagic stroke survivors among the following three groups: Group A-standard Hua-Shan program after surgery; Group B-standard traditional program after surgery; Group C-no standard rehabilitation after surgery.Results: Significantly better functions after surgery were detected in all the groups, while the absence of standard rehabilitation massively offset the benefits of the surgery. Furthermore, the Hua-Shan program showed advantage over the traditional rehabilitation, which may largely be attributed to its improvements for the fine action of wrist&finger.Conclusions: The Hua-Shan program provided the opportunity to maximize the benefits of contralateral seventh cervical nerve transfer.IMPLICATIONS FOR REHABILITATIONStandard rehabilitation plays key roles in the recovery process for patients undergoing contralateral seventh cervical nerve transfer.The Hua-Shan program targeting nerve regeneration, brain plasticity and group therapy further improved the benefits of patients undergoing contralateral seventh cervical nerve transfer.
Collapse
Affiliation(s)
- Jie Li
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Ying Ying
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Fan Su
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Liwen Chen
- Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Jingrui Yang
- Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Jie Jia
- Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaofeng Jia
- Department of Neurosurgery, Orthopaedics, Anatomy Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wendong Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|