1
|
Cao M, Sheng R, Sun Y, Cao Y, Wang H, Zhang M, Pu Y, Gao Y, Zhang Y, Lu P, Teng G, Wang Q, Rui Y. Delivering Microrobots in the Musculoskeletal System. NANO-MICRO LETTERS 2024; 16:251. [PMID: 39037551 PMCID: PMC11263536 DOI: 10.1007/s40820-024-01464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/16/2024] [Indexed: 07/23/2024]
Abstract
Disorders of the musculoskeletal system are the major contributors to the global burden of disease and current treatments show limited efficacy. Patients often suffer chronic pain and might eventually have to undergo end-stage surgery. Therefore, future treatments should focus on early detection and intervention of regional lesions. Microrobots have been gradually used in organisms due to their advantages of intelligent, precise and minimally invasive targeted delivery. Through the combination of control and imaging systems, microrobots with good biosafety can be delivered to the desired area for treatment. In the musculoskeletal system, microrobots are mainly utilized to transport stem cells/drugs or to remove hazardous substances from the body. Compared to traditional biomaterial and tissue engineering strategies, active motion improves the efficiency and penetration of local targeting of cells/drugs. This review discusses the frontier applications of microrobotic systems in different tissues of the musculoskeletal system. We summarize the challenges and barriers that hinder clinical translation by evaluating the characteristics of different microrobots and finally point out the future direction of microrobots in the musculoskeletal system.
Collapse
Affiliation(s)
- Mumin Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Renwang Sheng
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Yimin Sun
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ying Cao
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
| | - Hao Wang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Ming Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Yunmeng Pu
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yucheng Gao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Yuanwei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Panpan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Gaojun Teng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Qianqian Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
2
|
Huang M, Li P, Chen F, Cai Z, Yang S, Zheng X, Li W. Is extremely low frequency pulsed electromagnetic fields applicable to gliomas? A literature review of the underlying mechanisms and application of extremely low frequency pulsed electromagnetic fields. Cancer Med 2022; 12:2187-2198. [PMID: 35929424 PMCID: PMC9939155 DOI: 10.1002/cam4.5112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/07/2022] Open
Abstract
Gliomas refer to a group of complicated human brain tumors with a low 5-year survival rate and limited therapeutic options. Extremely low-frequency pulsed electromagnetic field (ELF-PEMF) is a specific magnetic field featuring almost no side effects. However, the application of ELF-PEMF in the treatment of gliomas is rare. This review summarizes five significant underlying mechanisms including calcium ions, autophagy, apoptosis, angiogenesis, and reactive oxygen species, and applications of ELF-PEMF in glioma treatment from a clinical practice perspective. In addition, the prospects of ELF-PEMF in combination with conventional therapy for the treatment of gliomas are reviewed. This review benefits any specialists, especially oncologists, interested in this new therapy because it can help treat patients with gliomas properly.
Collapse
Affiliation(s)
- Mengqian Huang
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Parker Li
- Clinical MedicineShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Feng Chen
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zehao Cai
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Shoubo Yang
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiaohong Zheng
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenbin Li
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Donderwinkel I, Tuan RS, Cameron NR, Frith JE. Tendon tissue engineering: Current progress towards an optimized tenogenic differentiation protocol for human stem cells. Acta Biomater 2022; 145:25-42. [PMID: 35470075 DOI: 10.1016/j.actbio.2022.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 12/19/2022]
Abstract
Tendons are integral to our daily lives by allowing movement and locomotion but are frequently injured, leading to patient discomfort and impaired mobility. Current clinical procedures are unable to fully restore the native structure of the tendon, resulting in loss of full functionality, and the weakened tissue following repair often re-ruptures. Tendon tissue engineering, involving the combination of cells with biomaterial scaffolds to form new tendon tissue, holds promise to improve patient outcomes. A key requirement for efficacy in promoting tendon tissue formation is the optimal differentiation of the starting cell populations, most commonly adult tissue-derived mesenchymal stem/stromal cells (MSCs), into tenocytes, the predominant cellular component of tendon tissue. Currently, a lack of consensus on the protocols for effective tenogenic differentiation is hampering progress in tendon tissue engineering. In this review, we discuss the current state of knowledge regarding human stem cell differentiation towards tenocytes and tendon tissue formation. Tendon development and healing mechanisms are described, followed by a comprehensive overview of the current protocols for tenogenic differentiation, including the effects of biochemical and biophysical cues, and their combination, on tenogenesis. Lastly, a synthesis of the key features of these protocols is used to design future approaches. The holistic evaluation of current knowledge should facilitate and expedite the development of efficacious stem cell tenogenic differentiation protocols with future impact in tendon tissue engineering. STATEMENT OF SIGNIFICANCE: The lack of a widely-adopted tenogenic differentiation protocol has been a major hurdle in the tendon tissue engineering field. Building on current knowledge on tendon development and tendon healing, this review surveys peer-reviewed protocols to present a holistic evaluation and propose a pathway to facilitate and expedite the development of a consensus protocol for stem cell tenogenic differentiation and tendon tissue engineering.
Collapse
|
4
|
Hamid HA, Sarmadi VH, Prasad V, Ramasamy R, Miskon A. Electromagnetic field exposure as a plausible approach to enhance the proliferation and differentiation of mesenchymal stem cells in clinically relevant scenarios. J Zhejiang Univ Sci B 2022; 23:42-57. [PMID: 35029087 PMCID: PMC8758935 DOI: 10.1631/jzus.b2100443] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapy has been regarded as one of the most revolutionary breakthroughs in the history of modern medicine owing to its myriad of immunoregulatory and regenerative properties. With the rapid progress in the fields of osteo- and musculoskeletal therapies, the demand for MSC-based treatment modalities is becoming increasingly prominent. In this endeavor, researchers around the world have devised new and innovative techniques to support the proliferation of MSCs while minimizing the loss of hallmark features of stem cells. One such example is electromagnetic field (EMF) exposure, which is an alternative approach with promising potential. In this review, we present a critical discourse on the efficiency, practicability, and limitations of some of the relevant methods, with insurmountable evidence backing the implementation of EMF as a feasible strategy for the clinically relevant expansion of MSCs.
Collapse
Affiliation(s)
- Haslinda Abdul Hamid
- Bio-artificial Organ and Regenerative Medicine Unit, National Defense University of Malaysia, Kuala Lumpur 57000, Malaysia
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran 144961 4535, Iran.,Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran 199671 4353, Iran
| | - Vivek Prasad
- Stem Cell and Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia
| | - Rajesh Ramasamy
- Stem Cell and Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia
| | - Azizi Miskon
- Bio-artificial Organ and Regenerative Medicine Unit, National Defense University of Malaysia, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
5
|
DNMT1 and miRNAs: possible epigenetics footprints in electromagnetic fields utilization in oncology. Med Oncol 2021; 38:125. [PMID: 34495398 DOI: 10.1007/s12032-021-01574-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Many studies were performed to unravel the effects of different types of Electromagnetic fields (EMFs) on biological systems. Some studies were conducted to exploit EMFs for medical purposes mainly in cancer therapy. Although many studies suggest that the EMFs exposures can be effective in pre-clinical cancer issues, the treatment outcomes of these exposures on the cancer cells, especially at the molecular level, are challenging and overwhelmingly complicated yet. This article aims to review the epigenetic mechanisms that can be altered by EMFs exposures with the main emphasis on Extremely low frequency electromagnetic field (ELF-EMF). The epigenetic mechanisms are reversible and affected by environmental factors, thus, EMFs exposures can modulate these mechanisms. According to the reports, ELF-EMF exposures affect epigenetic machinery directly or through the molecular signaling pathways. ELF-EMF in association with DNA methylation, histone modification, miRNAs, and nucleosome remodeling could affect the homeostasis of cancer cells and play a role in DNA damage repairing, apoptosis induction, prevention of metastasis, differentiation, and cell cycle regulation. In general, the result of this study shows that ELF-EMF exposure probably can be effective in cancer epigenetic therapy, but more molecular and clinical investigations are needed to clarify the safe and specific dosimetric characteristics of ELF-EMF in practice.
Collapse
|
6
|
Zhang Z, Li Y, Zhang T, Shi M, Song X, Yang S, Liu H, Zhang M, Cui Q, Li Z. Hepatocyte Growth Factor-Induced Tendon Stem Cell Conditioned Medium Promotes Healing of Injured Achilles Tendon. Front Cell Dev Biol 2021; 9:654084. [PMID: 33898452 PMCID: PMC8059769 DOI: 10.3389/fcell.2021.654084] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Tendon repair is a medical challenge. Our present study investigated the effectiveness of acellular therapy consisting of conditioned medium (CM) of tendon stem cells (TSCs) induced with hepatocyte growth factor (HGF) in promoting the healing of injured Achilles tendon in a rat model. Proteomic analysis of soluble substances in the CM was performed using an array chip, and bioinformatic analysis was carried out to evaluate interactions among the factors. The effects of CM on viability and migratory capacity of tendon fibroblasts derived from rats with ruptured Achilles tendon were evaluated with the Cell Counting Kit 8 and wound healing assay, respectively. The expression of extracellular matrix (ECM)-related protein was assessed by western blotting. Rats with Achilles tendon injury were treated with CM by local injection for 2 weeks, and the organization of tendon fibers at the lesion site was evaluated by hematoxylin and eosin and Masson's trichrome staining of tissue samples. The deposition and degradation of ECM proteins and the expression of inflammatory factors at the lesion site were evaluated by immunohistochemistry and immunofluorescence. Biomechanical testing was carried out on the injured tendons to assess functional recovery. There were 12 bioactive molecules in the CM, with HGF as the hub of the protein-protein interaction network. CM treatment enhanced the viability and migration of tendon fibroblasts, altered the expression of ECM proteins, promoted the organization of tendon fibers, suppressed inflammation and improved the biomechanics of the injured Achilles tendon. These results suggest that HGF stimulates the secretion of soluble secretory products by TSCs and CM promotes the repair and functional recovery of ruptured Achilles tendon. Thus, HGF-induced TSC CM has therapeutic potential for the treatment of tendinopathy.
Collapse
Affiliation(s)
- Zenan Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yutian Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tingting Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Manyu Shi
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Song
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shulong Yang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hengchen Liu
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingzhao Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingbo Cui
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaozhu Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Vinhas A, Rodrigues MT, Gonçalves AI, Reis RL, Gomes ME. Magnetic responsive materials modulate the inflammatory profile of IL-1β conditioned tendon cells. Acta Biomater 2020; 117:235-245. [PMID: 32966921 DOI: 10.1016/j.actbio.2020.09.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Tendinopathies represent half of all musculoskeletal injuries worldwide. Inflammatory events contribute to both tendon healing and to tendinopathy conditions but the cellular triggers leading to one or the other are unknown. In previous studies, we showed that magnetic field actuation modulates human tendon cells (hTDCs) behavior in pro-inflammatory environments, and that magnetic responsive membranes could positively influence inflammation responses in a rat ectopic model. Herein, we propose to investigate the potential synergistic action of the magnetic responsive membranes, made of a polymer blend of starch with polycaprolactone incorporating magnetic nanoparticles (magSPCL), and the actuation of pulsed electromagnetic field (PEMF): 5 Hz, 4mT of intensity and 50% of duty cycle, in IL-1β-treated-hTDCs, and in the immunomodulatory response of macrophages. It was found that the expression of pro-inflammatory (TNFα, IL-6, IL-8, COX-2) and ECM remodeling (MMP-1,-2,-3) markers tend to decrease in cells cultured onto magSPCL membranes under PEMF, while the expression of TIMP-1 and anti-inflammatory genes (IL-4, IL-10) increases. Also, CD16++ and CD206+ macrophages were only found on magSPCL membranes with PEMF application. Magnetic responsive membranes show a modulatory effect on the inflammatory profile of hTDCs favoring anti-inflammatory cues which is also supported by the anti-inflammatory/repair markers expressed in macrophages. These results suggest that magnetic responsive magSPCL membranes can contribute for inflammation resolution acting on both resident cell populations and inflammatory cells, and thus significantly contribute to tendon regenerative strategies. Statement of significance Magnetically-assisted strategies have received great attention in recent years to remotely trigger and guide cell responses. Inflammation plays a key role in tendon healing but persistent pro-inflammatory molecules can contribute to tendon disorders, and therefore provide a therapeutic target for advanced treatments. We have previously reported that magnetic fields modulate the response of human tendon cells (hTDCs) conditioned to pro-inflammatory environments (IL-1β-treated-hTDCs), and that magnetic responsive membranes positively influence immune responses. In the present work, we combined pulsed electromagnetic field (PEMF) and magnetic responsive membranes to guide the inflammatory profile of IL-1β-treated-hTDCs and of macrophages. The results showed that the synergistic action of PEMF and magnetic membranes supports the applicability of magnetically actuated systems to regulate inflammatory events and stimulate tendon regeneration.
Collapse
Affiliation(s)
- A Vinhas
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - M T Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - A I Gonçalves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - R L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - M E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
8
|
Hu H, Yang W, Zeng Q, Chen W, Zhu Y, Liu W, Wang S, Wang B, Shao Z, Zhang Y. Promising application of Pulsed Electromagnetic Fields (PEMFs) in musculoskeletal disorders. Biomed Pharmacother 2020; 131:110767. [PMID: 33152929 DOI: 10.1016/j.biopha.2020.110767] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence suggests that an exogenous electromagnetic field might be involved in many biologic processes which are of great importance for therapeutic interventions. Pulsed electromagnetic fields (PEMFs) are known to be a noninvasive, safe and effective therapy agent without apparent side effects. Numerous studies have shown that PEMFs possess the potential to become a stand-alone or adjunctive treatment modality for treating musculoskeletal disorders. However, several issues remain unresolved. Prior to their widely clinical application, further researches from well-designed, high-quality studies are still required to standardize the treatment parameters and derive the optimal protocol for health-care decision making. In this review, we aim to provide current evidence on the mechanism of action, clinical applications, and controversies of PEMFs in musculoskeletal disorders.
Collapse
Affiliation(s)
- Hongzhi Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Qianwen Zeng
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - YanBin Zhu
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shangyu Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Baichuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yingze Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.
| |
Collapse
|
9
|
Wang L, Kang Y, Yan H, Zhu X, Zhu T, Jiang J, Zhao J. Tendon regeneration induced by umbilical cord graft in a rabbit tendon defect model. J Tissue Eng Regen Med 2020; 14:1009-1018. [PMID: 32336031 DOI: 10.1002/term.3052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 11/06/2022]
Abstract
Whether tendon regeneration can be induced using the umbilical cord as a whole-graft structure is unknown. In this study, we explored the potential for tendon regeneration induction using an umbilical cord graft in a rabbit model of patella tendon defects. In 52 of 54 New Zealand White rabbits, the central third of the patella tendons of both hind legs was removed to create tendon defects. The rabbits were randomly divided into four groups, nonfilling (empty defect), refilling (defect refilled with resected tendon portion), Wharton's jelly (WJ) outside (WJO; defect filled with umbilical cord graft, WJ side facing outward), and WJ inside (WJI; same as WJO with WJ side facing inward) groups. Four rabbits from WJO and WJI groups were sacrificed for human CD 105 evaluation 1 month after surgery. Further histological, biomechanical, and gene expression analyses were performed at 3 and 6 months after surgery. The untreated patella tendons in the remaining two rabbits were harvested as normal biomechanical controls. Histological evaluation showed that the formed tissue structure fibers in the tendon defect area were much denser and more mature in the WJI group than in all other groups. Biomechanical testing showed that the failure load of the final tissue structure was the highest in the WJI group. Real-time polymerase chain reaction indicated that the expression of most tendon-related genes was upregulated in the WJI group at 6 months after surgery. We concluded that umbilical cord grafting induces effective tendon regeneration, particularly when the WJ side faces inward.
Collapse
Affiliation(s)
- Liren Wang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuhao Kang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hexin Yan
- Department of Research and Development, Shanghai Cryowise Medical Technology Co. Ltd., Shanghai, China
| | - Xuejing Zhu
- Department of Research and Development, Shanghai Cryowise Medical Technology Co. Ltd., Shanghai, China
| | - Tonghe Zhu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
10
|
Corrigendum to "Pulsed Electromagnetic Fields Improve Tenogenic Commitment of Umbilical Cord-Derived Mesenchymal Stem Cells: A Potential Strategy for Tendon Repair-An In Vitro Study". Stem Cells Int 2019; 2019:9761573. [PMID: 31191691 PMCID: PMC6525792 DOI: 10.1155/2019/9761573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
|
11
|
Massari L, Benazzo F, Falez F, Perugia D, Pietrogrande L, Setti S, Osti R, Vaienti E, Ruosi C, Cadossi R. Biophysical stimulation of bone and cartilage: state of the art and future perspectives. INTERNATIONAL ORTHOPAEDICS 2019; 43:539-551. [PMID: 30645684 PMCID: PMC6399199 DOI: 10.1007/s00264-018-4274-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Biophysical stimulation is a non-invasive therapy used in orthopaedic practice to increase and enhance reparative and anabolic activities of tissue. METHODS A sistematic web-based search for papers was conducted using the following titles: (1) pulsed electromagnetic field (PEMF), capacitively coupled electrical field (CCEF), low intensity pulsed ultrasound system (LIPUS) and biophysical stimulation; (2) bone cells, bone tissue, fracture, non-union, prosthesis and vertebral fracture; and (3) chondrocyte, synoviocytes, joint chondroprotection, arthroscopy and knee arthroplasty. RESULTS Pre-clinical studies have shown that the site of interaction of biophysical stimuli is the cell membrane. Its effect on bone tissue is to increase proliferation, synthesis and release of growth factors. On articular cells, it creates a strong A2A and A3 adenosine-agonist effect inducing an anti-inflammatory and chondroprotective result. In treated animals, it has been shown that the mineralisation rate of newly formed bone is almost doubled, the progression of the osteoarthritic cartilage degeneration is inhibited and quality of cartilage is preserved. Biophysical stimulation has been used in the clinical setting to promote the healing of fractures and non-unions. It has been successfully used on joint pathologies for its beneficial effect on improving function in early OA and after knee surgery to limit the inflammation of periarticular tissues. DISCUSSION The pooled result of the studies in this review revealed the efficacy of biophysical stimulation for bone healing and joint chondroprotection based on proven methodological quality. CONCLUSION The orthopaedic community has played a central role in the development and understanding of the importance of the physical stimuli. Biophysical stimulation requires care and precision in use if it is to ensure the success expected of it by physicians and patients.
Collapse
Affiliation(s)
- Leo Massari
- University of Ferrara, Via Vigne 4, 44121, Ferrara, Italy.
| | - Franco Benazzo
- IRCCS Foundation "San Matteo" Hospital, University of Pavia, 27100, Pavia, Italy
| | | | | | | | | | | | | | - Carlo Ruosi
- Federico II University Naples, 80100, Naples, Italy
| | | |
Collapse
|