1
|
Fan Z, Dou B, Wang J, Wu Y, Du S, Li J, Yao K, Li Y, Wang S, Gong Y, Guo Y, Xu Z. Effects and mechanisms of acupuncture analgesia mediated by afferent nerves in acupoint microenvironments. Front Neurosci 2024; 17:1239839. [PMID: 38384495 PMCID: PMC10879281 DOI: 10.3389/fnins.2023.1239839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/27/2023] [Indexed: 02/23/2024] Open
Abstract
In the past few decades, the use of acupuncture analgesia in clinical practice has increased worldwide. This is due to its various benefits, including natural alleviation of pain without causing various adverse effects associated with non-steroidal anti-inflammatory drugs (NSAID) and opioids. The acupoint represents the initial site of acupuncture stimulation, where diverse types of nerve fibers located at the acupoint hold significant roles in the generation and transmission of acupuncture-related information. In this study, we analyzed the patterns and mechanisms of acupuncture analgesic mediated by acupoint afferent fibers, and found that acupuncture stimulates acupoints which rapidly and directly induces activation of high-density primary afferent fibers under the acupoints, including myelinated A fibers and unmyelinated C fibers. During acupuncture stimulation at the muscle layer, the analgesic effects can be induced by stimulation of A fiber threshold intensity. At the skin layer, the analgesic effects can only be produced by stimulation of C fiber threshold intensity. Electroacupuncture (EA) activates A fibers, while manual acupuncture (MA) activates both A and C fibers. Furthermore, acupuncture alters acupoint microenvironments, which positively modulates afferent fibers, enhancing the transmission of analgesic signals. In addition to local activation and conduction at acupoints, nerve fibers mediate the transmission of acupuncture information to pain centers. In the spinal cord, acupuncture activates neurons by inducing afferent fiber depolarization, modulating pain gating, inhibiting long-term potentiation (LTP) of the spinal dorsal horn and wide dynamic range (WDR) neuronal activities. At higher nerve centers, acupuncture inhibits neuronal activation in pain-related brain regions. In summary, acupuncture inhibits pain signal transmission at peripheral and central systems by activating different patterns of afferent fibers located on various layers of acupoints. This study provides ideas for enhancing the precise application and clinical translation of acupuncture.
Collapse
Affiliation(s)
- Zezhi Fan
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baomin Dou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiangshan Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongjian Wu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Simin Du
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiashan Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kaifang Yao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanwei Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shenjun Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
| |
Collapse
|
2
|
Li W, Liu J, Chen A, Dai D, Zhao T, Liu Q, Song J, Xiong L, Gao XF. Shared nociceptive dorsal root ganglion neurons participating in acupoint sensitization. Front Mol Neurosci 2022; 15:974007. [PMID: 36106140 PMCID: PMC9465389 DOI: 10.3389/fnmol.2022.974007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
When the body is under pathological stress (injury or disease), the status of associated acupoints changes, including decreased pain threshold. Such changes in acupoint from a “silent” to an “active” state are considered “acupoint sensitization,” which has become an important indicator of acupoint selection. However, the mechanism of acupoint sensitization remains unclear. In this study, by retrograde tracing, morphological, chemogenetic, and behavioral methods, we found there are some dorsal root ganglion (DRG) neurons innervating the ST36 acupoint and ipsilateral hind paw (IHP) plantar simultaneously. Inhibition of these shared neurons induced analgesia in the complete Freund’s adjuvant (CFA) pain model and obstruction of nociceptive sensation in normal mice, and elevated the mechanical pain threshold (MPT) of ST36 acupoint in the CFA model. Excitation of shared neurons induced pain and declined the MPT of ST36 acupoint. Furthermore, most of the shared DRG neurons express TRPV1, a marker of nociceptive neurons. These results indicate that the shared nociceptive DRG neurons participate in ST36 acupoint sensitization in CFA-induced chronic pain. This raised a neural mechanism of acupoint sensitization at the level of primary sensory transmission.
Collapse
Affiliation(s)
- Wanrong Li
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
| | - Jia Liu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Aiwen Chen
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
| | - Danqing Dai
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
| | - Tiantian Zhao
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
| | - Qiong Liu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
| | - Jianren Song
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
- *Correspondence: Lize Xiong,
| | - Xiao-Fei Gao
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
- Xiao-Fei Gao,
| |
Collapse
|
3
|
Liu SQ, Li B, Li JJ, Sun S, Sun SR, Wu Q. Neuroendocrine regulations in tissue-specific immunity: From mechanism to applications in tumor. Front Cell Dev Biol 2022; 10:896147. [PMID: 36072337 PMCID: PMC9442449 DOI: 10.3389/fcell.2022.896147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
Immune responses in nonlymphoid tissues play a vital role in the maintenance of homeostasis. Lots of evidence supports that tissue-specific immune cells provide defense against tumor through the localization in different tissue throughout the body, and can be regulated by diverse factors. Accordingly, the distribution of nervous tissue is also tissue-specific which is essential in the growth of corresponding organs, and the occurrence and development of tumor. Although there have been many mature perspectives on the neuroendocrine regulation in tumor microenvironment, the neuroendocrine regulation of tissue-specific immune cells has not yet been summarized. In this review, we focus on how tissue immune responses are influenced by autonomic nervous system, sensory nerves, and various neuroendocrine factors and reversely how tissue-specific immune cells communicate with neuroendocrine system through releasing different factors. Furthermore, we pay attention to the potential mechanisms of neuroendocrine-tissue specific immunity axis involved in tumors. This may provide new insights for the immunotherapy of tumors in the future.
Collapse
Affiliation(s)
- Si-Qing Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan-Juan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Sheng-Rong Sun, ; Qi Wu,
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Sheng-Rong Sun, ; Qi Wu,
| |
Collapse
|
4
|
Oh JE, Kim SN. Anti-Inflammatory Effects of Acupuncture at ST36 Point: A Literature Review in Animal Studies. Front Immunol 2022; 12:813748. [PMID: 35095910 PMCID: PMC8790576 DOI: 10.3389/fimmu.2021.813748] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
So far, a number of acupuncture studies have shown anti-inflammatory effects of acupuncture treatment, mostly known at specific point ST36. However, there is no literature that oversaw the inflammation-regulatory effects of acupuncture in each tissue. Therefore, we investigated how acupuncture at specific acupoint ST36 regulates inflammation and its underlying mechanisms. We searched literatures on PubMed until July 2021 using the keywords “animal, acupuncture, ST36, inflammation, immune,” and 292 literatures were searched. We ultimately selected 69 studies to determine the anti-inflammatory actions of acupuncture at ST36 and classified the changes of inflammatory mediators according to target regions. Forty-three studies were included in body fluids, 27 studies in the digestive system, 17 studies in the nervous system, and 30 studies in other tissues or organs. In this review, we found that acupuncture at ST36 has clinical benefits in relieving inflammation through several mechanisms such as vagus nerve activation, toll-like receptor 4 (TLR4)/NF-κB signaling, macrophage polarization, mitogen-activated protein kinase (MAPK) signaling pathway, and cholinergic anti-inflammatory pathway. We expect that these data will inform further studies related to ST36 acupuncture on inflammation.
Collapse
Affiliation(s)
- Ji-Eun Oh
- College of Korean Medicine, Dongguk University, Goyang, South Korea
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, Goyang, South Korea
| |
Collapse
|
5
|
ST36 Acupuncture Alleviates the Inflammation of Adjuvant-Induced Arthritic Rats by Targeting Monocyte/Macrophage Modulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9430501. [PMID: 33727948 PMCID: PMC7936911 DOI: 10.1155/2021/9430501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 01/13/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Background Rheumatoid arthritis (RA) is a chronic systemic chronic autoimmune disease characterized by the aggregation of immune cells and secretion of cytokines in the joint synovium, causing hyperblastosis and even bone destruction. Acupuncture has been proven effective in RA treatment. This study aimed to investigate the anti-inflammatory action of acupuncture, specifically, in relation to immune cell interactions and key mediators. Methods Rats with adjuvant-induced arthritics (AIA) were treated with manual acupuncture (MA) at Zusanli (ST36). Joint edema and paw withdrawal latency were monitored to observe the effects on inflammation. The levels of 24 cytokines, chemokines, and growth factors in ankle joints during the treatment (on days 1, 7, 15, and 21) were detected by multiplex immunoassay. A bioinformatics analysis based on a directed weighted mathematical model was used to construct cell communication network diagrams and identify the key cells through calculation. The monocyte/macrophage polarization in inflamed joints was investigated by detecting M1- and M2-phenotypic populations and their related cytokines. Results ST36 MA alleviated paw edema and upregulated the nociceptive threshold of AIA rats. Several innate and adaptive immune cytokines were dynamically regulated by MA, and MA-treated rats showed a significant improvement in symptoms compared with AIA rats by day 21. The immune cell-cell communication networks were intensified with the development of RA but were significantly reduced after treatment with MA. MA was found to specifically regulate monocytes/macrophages in inflamed ankle joints ST36 MA also inhibited M1-phenotype macrophages accompanied by decreased levels of IL-1β. Conclusions ST36 MA showed anti-inflammatory and analgesic effects as well as inhibition of immune cell communication networks in inflamed joints of AIA rats. Inhibiting the polarization of macrophages to the M1-phenotype in inflamed joints may be one of the key mechanisms of MA anti-inflammatory action. This research highlighted a systematic research paradigm for investigating mechanisms of acupuncture action.
Collapse
|
6
|
Hu D, Shen W, Gong C, Fang C, Yao C, Zhu X, Wang L, Zhao C, Zhu S. Grain-sized moxibustion promotes NK cell antitumour immunity by inhibiting adrenergic signalling in non-small cell lung cancer. J Cell Mol Med 2021; 25:2900-2908. [PMID: 33506637 PMCID: PMC7957214 DOI: 10.1111/jcmm.16320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/30/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related death worldwide, and non–small cell lung cancer (NSCLC) accounts for 85% of lung cancer diagnoses. As an ancient therapy, moxibustion has been used to treat cancer‐related symptoms in clinical practice. However, its antitumour effect on NSCLC remains largely unexplored. In the present study, a Lewis lung cancer (LLC) xenograft tumour model was established, and grain‐sized moxibustion (gMoxi) was performed at the acupoint of Zusanli (ST36). Flow cytometry and RNA sequencing (RNA‐Seq) were used to access the immune cell phenotype, cytotoxicity and gene expression. PK136, propranolol and epinephrine were used for natural killer (NK) cell depletion, β‐adrenoceptor blockade and activation, respectively. Results showed that gMoxi significantly inhibited LLC tumour growth. Moreover, gMoxi significantly increased the proportion, infiltration and activation of NK cells, whereas it did not affect CD4+ and CD8+ T cells. NK cell depletion reversed gMoxi‐mediated tumour regression. LLC tumour RNA‐Seq indicated that these effects might be related to the inhibition of adrenergic signalling. Surely, β‐blocker propranolol clearly inhibited LLC tumour growth and promoted NK cells, and gMoxi no longer increased tumour regression and promoted NK cells after propranolol treatment. Epinephrine could inhibit NK cell activity, and gMoxi significantly inhibited tumour growth and promoted NK cells after epinephrine treatment. These results demonstrated that gMoxi could promote NK cell antitumour immunity by inhibiting adrenergic signalling, suggesting that gMoxi could be used as a promising therapeutic regimen for the treatment of NSCLC, and it had a great potential in NK cell–based cancer immunotherapy.
Collapse
Affiliation(s)
- Dan Hu
- School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiming Shen
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenyuan Gong
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Fang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Yao
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaowen Zhu
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lixin Wang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Zhao
- School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shiguo Zhu
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Tao LT, Huang TL, Zheng DW, Zou X. Case of professor Xu ZOU's acupuncture technique for "benefiting kidney and strengthening anti-pathogenic qi" in promoting the absorption of COVID-19. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2020; 30:167-170. [PMID: 32837109 PMCID: PMC7377728 DOI: 10.1016/j.wjam.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A case of the absorption of corona virus disease 2019 (COVID-19) promoted by professor Xu ZOU's acupuncture technique for "benefiting kidney and strengthening anti-pathogenic qi" is introduced. A female patient suffered from COVID-19, 64 years old, had been treated with acupuncture and Chinese herb granules for 10 days on the base of the oral administration of moxifloxacin. In the re-examination, the chest CT image indicated that the absorption of COVID-19 was obvious as compared with before, the nucleic acid test of novel corona virus was negative and the patient narrated no obvious discomfort. Acupuncture therapy plays its active adjuvant effect in the whole process of the treatment of COVID-19.
Collapse
Affiliation(s)
- Lan-Ting Tao
- Second Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China (, 510405, )
| | - Tao-Liang Huang
- Second Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China (, 510405, )
| | - Dan-Wen Zheng
- Second Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China (, 510405, )
| | - Xu Zou
- Second Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China (, 510405, )
| |
Collapse
|
8
|
Applying Complex Network and Cell-Cell Communication Network Diagram Methods to Explore the Key Cytokines and Immune Cells in Local Acupoint Involved in Acupuncture Treating Inflammatory Pain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2585960. [PMID: 32802117 PMCID: PMC7411476 DOI: 10.1155/2020/2585960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022]
Abstract
Manual acupuncture (MA) can effectively treat a variety of diseases, but its specific mechanism remains unclear. The “acupoint network” activated by MA participates in MA signal transduction, in which immune-related cells and cytokines play an important role. However, which cells and cytokines in the acupoint have changed after MA? What is the network relationship between them? Which cells and cytokines may play the most important role in MA effect? These problems are unclear. In this study, on the basis of affirming the analgesic, detumescence, and anti-inflammatory effect of MA, the concentration of 24 cytokines in ST36 acupoint in rats with inflammatory pain after MA treatment was detected by multiplex immunoassay technology. Then, using statistical and complex network and cell-cell communication (CCC) network diagram method to analyze the detected data depicts the network relationship between the cytokines and related cells objectively and establishes cytokine connection network and CCC network, respectively. The results showed that MA reinforced communication intensity between cells while reducing the overall correlation intensity. On this basis, the key cytokines and key cells at three MA time-points were screened out, cytokines IL-6, MCP-1, fibroblasts cell, and monocyte macrophage screened by the three methods at three MA time-points might be the key cytokines or key cells. After that, we detected the macrophages in ST36 acupoint by flow cytometry and immunofluorescence and found that the relative amount of macrophages increased significantly after MA, especially the macrophage of the dermis of skin. This study provided a basis for revealing the initiated mechanism of MA effect.
Collapse
|