1
|
Yang T, Fan X, Hou B, Wang J, Chen X. Linguistic network in early deaf individuals: A neuroimaging meta-analysis. Neuroimage 2024; 299:120720. [PMID: 38971484 DOI: 10.1016/j.neuroimage.2024.120720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024] Open
Abstract
This meta-analysis summarizes evidence from 44 neuroimaging experiments and characterizes the general linguistic network in early deaf individuals. Meta-analytic comparisons with hearing individuals found that a specific set of regions (in particular the left inferior frontal gyrus and posterior middle temporal gyrus) participates in supramodal language processing. In addition to previously described modality-specific differences, the present study showed that the left calcarine gyrus and the right caudate were additionally recruited in deaf compared with hearing individuals. In addition, this study showed that the bilateral posterior superior temporal gyrus is shaped by cross-modal plasticity, whereas the left frontotemporal areas are shaped by early language experience. Although an overall left-lateralized pattern for language processing was observed in the early deaf individuals, regional lateralization was altered in the inferior frontal gyrus and anterior temporal lobe. These findings indicate that the core language network functions in a modality-independent manner, and provide a foundation for determining the contributions of sensory and linguistic experiences in shaping the neural bases of language processing.
Collapse
Affiliation(s)
- Tengyu Yang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Xinmiao Fan
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Jian Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China.
| | - Xiaowei Chen
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
2
|
Wang ZY, Liu L, Liu Y. A multi-source behavioral and physiological recording system for cognitive assessment. Sci Rep 2023; 13:8149. [PMID: 37208418 DOI: 10.1038/s41598-023-35289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
Cognitive assessment has a broad application prospect, including estimate of childhood neuro development and maturation, diagnosis of neurodegenerative diseases, and selection for special profession. With the development of computer technique and behavioral recording sensors, the method of cognitive assessment has been replaced from paper scale test to human-computer interaction. We can not only obtain the results of tasks, but also make it possible to acquire multiple behavioral and physiological data during the task. However, there is still a strong challenge of recording multi-source data synchronously during multi-dimensional cognitive assessments. Therefore, we built a multi-source cognitive assessment system can record multi-pattern behavioral and physiological data and feedback at different spatiotemporal levels. Under this system, we developed a multi-source diagnostic toolset for cognitive assessment, including eye tracking, hand movement, EEG and human-computer interaction data during the cognitive task. 238 participants with different mental disorders were assessed using this system. The results showed that our diagnostic toolset can be used to study the behavioral abnormalities of patients with mental disorders through the characteristics of multi-source data. Furthermore, this system can provide some objective diagnostic criteria such as behavioral characters and EEG features for diagnosis of mental disorders.
Collapse
Affiliation(s)
- Zi-Yang Wang
- State Key Laboratory of Multimodal Artificial Intelligence Systems, The Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Li Liu
- State Key Laboratory of Multimodal Artificial Intelligence Systems, The Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yu Liu
- State Key Laboratory of Multimodal Artificial Intelligence Systems, The Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Cardin V, Kremneva E, Komarova A, Vinogradova V, Davidenko T, Zmeykina E, Kopnin PN, Iriskhanova K, Woll B. Resting-state functional connectivity in deaf and hearing individuals and its link to executive processing. Neuropsychologia 2023; 185:108583. [PMID: 37142052 DOI: 10.1016/j.neuropsychologia.2023.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Sensory experience shapes brain structure and function, and it is likely to influence the organisation of functional networks of the brain, including those involved in cognitive processing. Here we investigated the influence of early deafness on the organisation of resting-state networks of the brain and its relation to executive processing. We compared resting-state connectivity between deaf and hearing individuals across 18 functional networks and 400 ROIs. Our results showed significant group differences in connectivity between seeds of the auditory network and most large-scale networks of the brain, in particular the somatomotor and salience/ventral attention networks. When we investigated group differences in resting-state fMRI and their link to behavioural performance in executive function tasks (working memory, inhibition and switching), differences between groups were found in the connectivity of association networks of the brain, such as the salience/ventral attention and default-mode networks. These findings indicate that sensory experience influences not only the organisation of sensory networks, but that it also has a measurable impact on the organisation of association networks supporting cognitive processing. Overall, our findings suggest that different developmental pathways and functional organisation can support executive processing in the adult brain.
Collapse
Affiliation(s)
- Velia Cardin
- Deafness, Cognition and Language Research Centre, UCL, London, UK.
| | - Elena Kremneva
- Department of Radiology, Research Center of Neurology, Moscow, Russia
| | - Anna Komarova
- Galina Zaitseva Centre for Deaf Studies and Sign Language, Moscow, Russia; Language Department, Moscow State Linguistics University, Moscow, Russia
| | - Valeria Vinogradova
- Deafness, Cognition and Language Research Centre, UCL, London, UK; Galina Zaitseva Centre for Deaf Studies and Sign Language, Moscow, Russia; School of Psychology, University of East Anglia, Norwich, UK
| | - Tatiana Davidenko
- Galina Zaitseva Centre for Deaf Studies and Sign Language, Moscow, Russia
| | - Elina Zmeykina
- Department of Radiology, Research Center of Neurology, Moscow, Russia; Department of Neurology, University Medical Center Göttingen, Germany
| | - Petr N Kopnin
- Department of Neurorehabilitation and Physiotherapy, Research Center of Neurology, Moscow, Russia
| | - Kira Iriskhanova
- Language Department, Moscow State Linguistics University, Moscow, Russia
| | - Bencie Woll
- Deafness, Cognition and Language Research Centre, UCL, London, UK
| |
Collapse
|
4
|
Alzaher M, Vannson N, Deguine O, Marx M, Barone P, Strelnikov K. Brain plasticity and hearing disorders. Rev Neurol (Paris) 2021; 177:1121-1132. [PMID: 34657730 DOI: 10.1016/j.neurol.2021.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022]
Abstract
Permanently changed sensory stimulation can modify functional connectivity patterns in the healthy brain and in pathology. In the pathology case, these adaptive modifications of the brain are referred to as compensation, and the subsequent configurations of functional connectivity are called compensatory plasticity. The variability and extent of auditory deficits due to the impairments in the hearing system determine the related brain reorganization and rehabilitation. In this review, we consider cross-modal and intra-modal brain plasticity related to bilateral and unilateral hearing loss and their restoration using cochlear implantation. Cross-modal brain plasticity may have both beneficial and detrimental effects on hearing disorders. It has a beneficial effect when it serves to improve a patient's adaptation to the visuo-auditory environment. However, the occupation of the auditory cortex by visual functions may be a negative factor for the restoration of hearing with cochlear implants. In what concerns intra-modal plasticity, the loss of interhemispheric asymmetry in asymmetric hearing loss is deleterious for the auditory spatial localization. Research on brain plasticity in hearing disorders can advance our understanding of brain plasticity and improve the rehabilitation of the patients using prognostic, evidence-based approaches from cognitive neuroscience combined with post-rehabilitation objective biomarkers of this plasticity utilizing neuroimaging.
Collapse
Affiliation(s)
- M Alzaher
- Université de Toulouse, UPS, centre de recherche cerveau et cognition, Toulouse, France; CNRS, CerCo, France
| | - N Vannson
- Université de Toulouse, UPS, centre de recherche cerveau et cognition, Toulouse, France; CNRS, CerCo, France
| | - O Deguine
- Université de Toulouse, UPS, centre de recherche cerveau et cognition, Toulouse, France; CNRS, CerCo, France; Faculté de médecine de Purpan, CHU Toulouse, université de Toulouse 3, France
| | - M Marx
- Université de Toulouse, UPS, centre de recherche cerveau et cognition, Toulouse, France; CNRS, CerCo, France; Faculté de médecine de Purpan, CHU Toulouse, université de Toulouse 3, France
| | - P Barone
- Université de Toulouse, UPS, centre de recherche cerveau et cognition, Toulouse, France; CNRS, CerCo, France.
| | - K Strelnikov
- Faculté de médecine de Purpan, CHU Toulouse, université de Toulouse 3, France
| |
Collapse
|
5
|
Abstract
Early sensory deprivation, such as deafness, shapes brain development in multiple ways. Deprived auditory areas become engaged in the processing of stimuli from the remaining modalities and in high-level cognitive tasks. Yet, structural and functional changes were also observed in non-deprived brain areas, which may suggest the whole-brain network changes in deaf individuals. To explore this possibility, we compared the resting-state functional network organization of the brain in early deaf adults and hearing controls and examined global network segregation and integration. Relative to hearing controls, deaf adults exhibited decreased network segregation and an altered modular structure. In the deaf, regions of the salience network were coupled with the fronto-parietal network, while in the hearing controls, they were coupled with other large-scale networks. Deaf adults showed weaker connections between auditory and somatomotor regions, stronger coupling between the fronto-parietal network and several other large-scale networks (visual, memory, cingulo-opercular and somatomotor), and an enlargement of the default mode network. Our findings suggest that brain plasticity in deaf adults is not limited to changes in the auditory cortex but additionally alters the coupling between other large-scale networks and the development of functional brain modules. These widespread functional connectivity changes may provide a mechanism for the superior behavioral performance of the deaf in visual and attentional tasks.
Collapse
|
6
|
Li C, Liu SY, Pi W, Zhang PX. Cortical plasticity and nerve regeneration after peripheral nerve injury. Neural Regen Res 2021; 16:1518-1523. [PMID: 33433465 PMCID: PMC8323687 DOI: 10.4103/1673-5374.303008] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
With the development of neuroscience, substantial advances have been achieved in peripheral nerve regeneration over the past decades. However, peripheral nerve injury remains a critical public health problem because of the subsequent impairment or absence of sensorimotor function. Uncomfortable complications of peripheral nerve injury, such as chronic pain, can also cause problems for families and society. A number of studies have demonstrated that the proper functioning of the nervous system depends not only on a complete connection from the central nervous system to the surrounding targets at an anatomical level, but also on the continuous bilateral communication between the two. After peripheral nerve injury, the interruption of afferent and efferent signals can cause complex pathophysiological changes, including neurochemical alterations, modifications in the adaptability of excitatory and inhibitory neurons, and the reorganization of somatosensory and motor regions. This review discusses the close relationship between the cerebral cortex and peripheral nerves. We also focus on common therapies for peripheral nerve injury and summarize their potential mechanisms in relation to cortical plasticity. It has been suggested that cortical plasticity may be important for improving functional recovery after peripheral nerve damage. Further understanding of the potential common mechanisms between cortical reorganization and nerve injury will help to elucidate the pathophysiological processes of nerve injury, and may allow for the reduction of adverse consequences during peripheral nerve injury recovery. We also review the role that regulating reorganization mechanisms plays in functional recovery, and conclude with a suggestion to target cortical plasticity along with therapeutic interventions to promote peripheral nerve injury recovery.
Collapse
Affiliation(s)
- Ci Li
- Department of Orthopedics and Trauma, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China
| | - Song-Yang Liu
- Department of Orthopedics and Trauma, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China
| | - Wei Pi
- Department of Orthopedics and Trauma, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration, Peking University; National Center for Trauma Medicine, Beijing, China
| |
Collapse
|
7
|
Gao F, Guo Y, Chu H, Yu W, Chen Z, Chen L, Li J, Yang D, Yang M, Du L, Li J, Chan CCH. Lower-Limb Sensorimotor Deprivation-Related Brain Activation in Patients With Chronic Complete Spinal Cord Injury. Front Neurol 2020; 11:555733. [PMID: 33123075 PMCID: PMC7573128 DOI: 10.3389/fneur.2020.555733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/21/2020] [Indexed: 01/10/2023] Open
Abstract
This study aims to investigate functional brain reorganization brought about by the loss of physical movement and sensory feedback in lower limbs in chronic spinal cord injury (SCI). Eleven paraplegia patients with SCI and 13 healthy controls (HCs) were recruited. The experimental task used was a visuomotor imagery task requiring subjects to engage in visualization of repetitive tapping movements of the upper or lower limbs. Blood oxygen level-dependent (BOLD) responses were captured during the experimental task, along with the accuracy rate and the response time. The SCI patients performed worse in the Rey Auditory Verbal Learning Test (RAVLT) and the Trail Making Test. SCI patients had a larger BOLD signal in the left lingual gyrus and right external globus pallidus (GPe) when imagining lower-limb movements. For the upper-limb task, SCI patients showed stronger BOLD responses than the HCs in extensive areas over the brain, including the bilateral precentral gyrus (preCG), bilateral inferior parietal gyrus, right GPe, right thalamus, left postcentral gyrus, and right superior temporal gyrus. In contrast, the HCs displayed stronger BOLD responses in the medial frontal gyrus and anterior cingulate gyrus for both upper- and lower-limb tasks than the SCI patients. In the SCI group, for the upper-limb condition, the amplitudes of BOLD responses in the left preCG were negatively correlated with the time since injury (r = -0.72, p = 0.012). For the lower-limb condition, the amplitudes of BOLD responses in the left lingual gyrus were negatively correlated with the scores on the Short Delay task of the RAVLT (r = -0.73, p = 0.011). Our study provided imaging evidence for abnormal changes in brain function and worsened cognitive test performance in SCI patients. These findings suggested possible compensatory strategies adopted by the SCI patients for the loss of sensorimotor function from the lower limbs when performing a limb imagery task.
Collapse
Affiliation(s)
- Feng Gao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,SCI Unit, China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yun Guo
- Department of Rehabilitation Medicine, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Hongyu Chu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Comprehensive Rehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Weiyong Yu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Radiology, China Rehabilitation Research Center, Beijing, China
| | - Zhenbo Chen
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Radiology, China Rehabilitation Research Center, Beijing, China
| | - Liang Chen
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,SCI Unit, China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,SCI Unit, China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Degang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,SCI Unit, China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Mingliang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,SCI Unit, China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liangjie Du
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,SCI Unit, China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,SCI Unit, China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
8
|
Ni H, Ding H, Tao J, Wang Y, Tao M, Huang L. [Effects of olfactory deprivation on action potential and ankyrin-G expression in glutamatergic neurons in the barrel cortex of mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:262-267. [PMID: 32376530 DOI: 10.12122/j.issn.1673-4254.2020.02.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate effect of upregulated touch sensation induced by olfactory deprivation on action potentials and ankyrin-G expression in the glutamatergic neurons in the barrel cortex of mice. METHODS Chloroform (40 μL) was dropped into the unilateral nasal cavity to induce olfactory deprivation in 40 C57 mice (12 days old), whose glutamatergic neurons were genetically labeled with yellow fluorescent protein (YFP). Behavioral experiments were carried out to assess the effects of olfactory deprivation on whisker tactile of the mice. The action potentials of the glutamatergic neurons in the barrel cortex on the side with or without chloroform treatment (olfactory deprivation group and control group, respectively) were recorded by patch-clamp electrophysiological recording, and ankyrin-G expression in the proximal axonal segment of the neurons was detected with immunohistochemistry. RESULTS Compared with those on the control side, the inter-spike intervals of the barrel glutamatergic neurons were significantly decreased and the absolute refractory periods were significantly shortened on the side with olfactory deprivation (P < 0.01); the expression of ankyrin-G was also significantly increased in the proximal axonal segment of the glutamatergic neurons in the barrel cortex on the side with olfactory deprivation (P < 0.01). CONCLUSIONS Olfaction deprivation induces up-regulation of touch sensation in mice possibly as a result of functional enhancement of the glutamatergic neurons and increased ankyrin-G expression in the barrel cortex.
Collapse
Affiliation(s)
- Hong Ni
- Department of Functional Experiment Center, Bengbu Medical College, Bengbu 233030, China
| | - Haihu Ding
- Department of Functional Experiment Center, Bengbu Medical College, Bengbu 233030, China
| | - Jing Tao
- Department of Functional Experiment Center, Bengbu Medical College, Bengbu 233030, China
| | - Yuanyuan Wang
- Department of Functional Experiment Center, Bengbu Medical College, Bengbu 233030, China
| | - Mingfei Tao
- Department of Functional Experiment Center, Bengbu Medical College, Bengbu 233030, China
| | - Li Huang
- Department of Pathophysiology, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
9
|
Awake Craniotomy for a Left Pan-Hippocampal Diffuse Low-Grade Glioma in a Deaf and Mute Patient Using Sign Language. World Neurosurg 2019; 134:629-634.e1. [PMID: 31790835 DOI: 10.1016/j.wneu.2019.11.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Awake craniotomy is becoming an essential technique, especially for intrinsic brain tumors which have no clear margins and where extent of resection (EOR) matters. However, intraoperative monitoring for awaken patients requires voice feedback in regular settings. Resection of hippocampal glioma is challenging because of its deep-seated location, its extension in an anterior-posterior axis, and being covered with eloquent cortex. We present a native deaf and mute patient, who has been diagnosed of a left pan-hippocampal glioma, who underwent an awake craniotomy using sign language during intraoperative monitoring. CASE DESCRIPTION The patient was a 58-year-old, right-handed, native deaf and mute woman who was diagnosed with a left pan-hippocampal glioma. Magnetic resonance imaging (MRI) revealed an intrinsic, nonenhanced, expansile lesion involving the pan-hippocampus. Functional MRI preferred a right hemisphere-dominant pattern. Neuropsychologic testing was normal. An awake craniotomy was successfully performed using sign language to preserve her remaining sole method of communication. A standard sleep-awake-sleep protocol with a transmiddle temporal gyrus (2.5 × 1 cm gyrectomy) approach was performed after a negative mapping result. More than 90% EOR was achieved with only a 0.7 cm3 residual tumor at the hippocampal tail. The pathology was anaplastic ganglioglioma, Ki-67 70%, and World Health Organization grade III. Her postoperative neuropsychologic status was the same as preoperative condition. CONCLUSIONS We demonstrated using sign language for intraoperative monitoring is feasible in a native deaf and mute patient. We also showed a navigation-assisted minimal transcortical approach to achieve >90% EOR for a pan-hippocampal glioma in a single-stage operation.
Collapse
|
10
|
Völter C, Götze L, Bruene-Cohrs U, Dazert S, Thomas JP. [Hearing and cognition: neurocognitive test batteries in otorhinolaryngology]. HNO 2019; 68:155-163. [PMID: 31628531 DOI: 10.1007/s00106-019-00762-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hearing and cognition are closely related to each other. Particularly in suboptimal listening situations, cognitive abilities become important to enable speech comprehension. Besides, studies have indicated that hearing impairment is associated with a more rapid mental decline compared to persons with normal hearing. However, hearing loss also has an impact on neurocognitive testing, which is generally based on auditive stimuli. With increasing age, the risk of sensory but also of cognitive impairments increases. So far this comorbidity receives little consideration in otorhinolaryngology. MATERIALS AND METHODS The paper presents an overview and evaluation of widely used German neurocognitive test batteries for older patients, with regard to the different test modalities and their focus. RESULTS A multitude of different neurocognitive screening tests and detailed test batteries are available, particularly in the field of dementia. So far, sensory deficits have not been considered in neurocognitive testing, neither concerning application nor interpretation. Normative data adapted to the hearing impaired are still missing. CONCLUSION With regard to demographic changes and the well-known bias between hearing and cognition, screening of neurocognitive functions should be implemented in basic otorhinolaryngologic diagnostics. More comprehensive test batteries might be useful for research purposes or speech therapy.
Collapse
Affiliation(s)
- C Völter
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Kopf- und Halschirurgie, St. Elisabeth-Hospital, Klinikum der Ruhr-Universität Bochum, Bleichstr. 15, 44787, Bochum, Deutschland.
| | - L Götze
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Kopf- und Halschirurgie, St. Elisabeth-Hospital, Klinikum der Ruhr-Universität Bochum, Bleichstr. 15, 44787, Bochum, Deutschland
| | - U Bruene-Cohrs
- Klinik für Psychiatrie, Psychotherapie und Präventivmedizin, LWL-Universitätsklinikum Bochum, Alexandrinentrasse 1, 44791, Bochum, Deutschland
| | - S Dazert
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Kopf- und Halschirurgie, St. Elisabeth-Hospital, Klinikum der Ruhr-Universität Bochum, Bleichstr. 15, 44787, Bochum, Deutschland
| | - J P Thomas
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Kopf- und Halschirurgie, St. Elisabeth-Hospital, Klinikum der Ruhr-Universität Bochum, Bleichstr. 15, 44787, Bochum, Deutschland
| |
Collapse
|
11
|
Stroh AL, Rösler F, Dormal G, Salden U, Skotara N, Hänel-Faulhaber B, Röder B. Neural correlates of semantic and syntactic processing in German Sign Language. Neuroimage 2019; 200:231-241. [PMID: 31220577 DOI: 10.1016/j.neuroimage.2019.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/16/2019] [Accepted: 06/12/2019] [Indexed: 11/24/2022] Open
Abstract
The study of deaf and hearing native users of signed languages can offer unique insights into how biological constraints and environmental input interact to shape the neural bases of language processing. Here, we use functional magnetic resonance imaging (fMRI) to address two questions: (1) Do semantic and syntactic processing in a signed language rely on anatomically and functionally distinct neural substrates as it has been shown for spoken languages? and (2) Does hearing status affect the neural correlates of these two types of linguistic processing? Deaf and hearing native signers performed a sentence judgement task on German Sign Language (Deutsche Gebärdensprache: DGS) sentences which were correct or contained either syntactic or semantic violations. We hypothesized that processing of semantic and syntactic violations in DGS relies on distinct neural substrates as it has been shown for spoken languages. Moreover, we hypothesized that effects of hearing status are observed within auditory regions, as deaf native signers have been shown to activate auditory areas to a greater extent than hearing native signers when processing a signed language. Semantic processing activated low-level visual areas and the left inferior frontal gyrus (IFG), suggesting both modality-dependent and independent processing mechanisms. Syntactic processing elicited increased activation in the right supramarginal gyrus (SMG). Moreover, psychophysiological interaction (PPI) analyses revealed a cluster in left middle occipital regions showing increased functional coupling with the right SMG during syntactic relative to semantic processing, possibly indicating spatial processing mechanisms that are specific to signed syntax. Effects of hearing status were observed in the right superior temporal cortex (STC): deaf but not hearing native signers showed greater activation for semantic violations than for syntactic violations in this region. Taken together, the present findings suggest that the neural correlates of language processing are partly determined by biological constraints, but that they may additionally be influenced by the unique processing demands of the language modality and different sensory experiences.
Collapse
Affiliation(s)
- Anna-Lena Stroh
- Biological Psychology and Neuropsychology, University of Hamburg, Germany.
| | - Frank Rösler
- Biological Psychology and Neuropsychology, University of Hamburg, Germany
| | - Giulia Dormal
- Biological Psychology and Neuropsychology, University of Hamburg, Germany
| | - Uta Salden
- Biological Psychology and Neuropsychology, University of Hamburg, Germany
| | - Nils Skotara
- Biological Psychology and Neuropsychology, University of Hamburg, Germany
| | - Barbara Hänel-Faulhaber
- Biological Psychology and Neuropsychology, University of Hamburg, Germany; Special Education, University of Hamburg, Germany
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg, Germany
| |
Collapse
|
12
|
Luan Y, Wang C, Jiao Y, Tang T, Zhang J, Teng GJ. Prefrontal-Temporal Pathway Mediates the Cross-Modal and Cognitive Reorganization in Sensorineural Hearing Loss With or Without Tinnitus: A Multimodal MRI Study. Front Neurosci 2019; 13:222. [PMID: 30930739 PMCID: PMC6423409 DOI: 10.3389/fnins.2019.00222] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/26/2019] [Indexed: 11/28/2022] Open
Abstract
Objective: Hearing loss, one main risk factor of tinnitus and hyperacusis, is believed to involve significant central functional abnormalities. The recruitment of the auditory cortex in non-auditory sensory and higher-order cognitive processing has been demonstrated in the hearing-deprived brain. The dorsolateral prefrontal cortex (dlPFC), which has dense anatomical connections with the auditory pathway, is known to play a crucial role in multi-sensory integration, auditory regulation, and cognitive processing. This study aimed to verify the role of the dlPFC in the cross-modal reorganization and cognitive participation of the auditory cortex in long-term sensorineural hearing loss (SNHL) by combining functional and structural measurements. Methods: Thirty five patients with long-term bilateral SNHL and 35 matched healthy controls underwent structural imaging, resting-state functional magnetic resonance imaging (rs-fMRI), diffusion tensor imaging (DTI), and neuropsychological assessments. Ten SNHL patients were with subjective tinnitus. Results: No differences in gray matter volume, spontaneous neural activity, or diffusion characteristics in the dlPFC were found between the SNHL and control groups. The functional connectivity (FC) between the dlPFC and the auditory cortex and visual areas, such as the cuneus, fusiform, lingual cortex, and calcarine sulcus was increased in patients with SNHL. ANOVA and post hoc tests revealed similar FC alterations in the SNHL patients with and without tinnitus when compared with the normal hearing controls, and SNHL patients with and without tinnitus showed no difference in the dlPFC FC. The FC in the auditory cortex was associated with the symbol digit modality test (SDMT) scores in the SNHL patients, which reflect attentional function, processing speed, and visual working memory. Hearing-related FC with the dlPFC was found in the lingual cortex. A tract-based spatial statistics (TBSS) analysis revealed decreased fractional anisotropy (FA) values, mainly in the temporal inferior fronto-occipital fasciculus (IFOF), which showed remarkable negative correlations with the mean hearing thresholds in SNHL. Conclusion: Higher functional coupling between the dlPFC and auditory and visual areas, accompanied by decreased FA along the IFOF connecting the frontal cortex and the occipito-temporal area, might mediate cross-modal plasticity via top-down regulation and facilitate the involvement of the auditory cortex in higher-order cognitive processing following long-term SNHL.
Collapse
Affiliation(s)
- Ying Luan
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Congxiao Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yun Jiao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Tianyu Tang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jian Zhang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Gao-Jun Teng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| |
Collapse
|