1
|
de Souza Neto LR, Montoya BO, Brandão-Neto J, Verma A, Bowyer S, Moreira-Filho JT, Dantas RF, Neves BJ, Andrade CH, von Delft F, Owens RJ, Furnham N, Silva-Jr FP. Fragment library screening by X-ray crystallography and binding site analysis on thioredoxin glutathione reductase of Schistosoma mansoni. Sci Rep 2024; 14:1582. [PMID: 38238498 PMCID: PMC10796382 DOI: 10.1038/s41598-024-52018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
Schistosomiasis is caused by parasites of the genus Schistosoma, which infect more than 200 million people. Praziquantel (PZQ) has been the main drug for controlling schistosomiasis for over four decades, but despite that it is ineffective against juvenile worms and size and taste issues with its pharmaceutical forms impose challenges for treating school-aged children. It is also important to note that PZQ resistant strains can be generated in laboratory conditions and observed in the field, hence its extensive use in mass drug administration programs raises concerns about resistance, highlighting the need to search for new schistosomicidal drugs. Schistosomes survival relies on the redox enzyme thioredoxin glutathione reductase (TGR), a validated target for the development of new anti-schistosomal drugs. Here we report a high-throughput fragment screening campaign of 768 compounds against S. mansoni TGR (SmTGR) using X-ray crystallography. We observed 49 binding events involving 35 distinct molecular fragments which were found to be distributed across 16 binding sites. Most sites are described for the first time within SmTGR, a noteworthy exception being the "doorstop pocket" near the NADPH binding site. We have compared results from hotspots and pocket druggability analysis of SmTGR with the experimental binding sites found in this work, with our results indicating only limited coincidence between experimental and computational results. Finally, we discuss that binding sites at the doorstop/NADPH binding site and in the SmTGR dimer interface, should be prioritized for developing SmTGR inhibitors as new antischistosomal drugs.
Collapse
Affiliation(s)
- Lauro Ribeiro de Souza Neto
- LaBECFar - Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Bogar Omar Montoya
- LaBECFar - Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - José Brandão-Neto
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Harwell, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Harwell, UK
| | - Anil Verma
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sebastian Bowyer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - José Teófilo Moreira-Filho
- LabMol - Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Rafael Ferreira Dantas
- LaBECFar - Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Bruno Junior Neves
- Laboratory of Cheminformatics, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
- CRAFT - Center for Research and Advancement of Fragments and Molecular Targets, University of São Paulo, São Paulo, Brazil
| | - Frank von Delft
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Harwell, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Harwell, UK
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Raymond J Owens
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Structural Biology, Rosalind Franklin Institute, Harwell, UK.
| | - Nicholas Furnham
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Floriano Paes Silva-Jr
- LaBECFar - Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| |
Collapse
|