1
|
Zhao L, Zhao BH, Ruze A, Li QL, Deng AX, Gao XM. Distinct roles of MIF in the pathogenesis of ischemic heart disease. Cytokine Growth Factor Rev 2024; 80:121-137. [PMID: 39438226 DOI: 10.1016/j.cytogfr.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The role of macrophage migration inhibitory factor (MIF) as a multifunctional cytokine in immunomodulation and inflammatory response is increasingly appreciated. Ischemic heart disease (IHD), the leading cause of global mortality, remains a focal point of research owing to its intricate pathophysiology. MIF has been identified as a critical player in IHD, where it exerts distinct roles. On one hand, MIF plays a protective role by enhancing energy metabolism through activation of AMPK, resisting oxidative stress, inhibiting activation of the JNK pathway, and maintaining intracellular calcium ion homeostasis. Additionally, MIF exerts protective effects through mesenchymal stem cells and exosomes. On the other hand, MIF can assume a pro-inflammatory role, which contributes to the exacerbation of IHD's development and progression. Furthermore, MIF levels significantly increase in IHD patients, and its genetic polymorphisms are positively correlated with prevalence and severity. These findings position MIF as a potential biomarker and therapeutic target in the management of IHD. This review summarizes the structure, source, signaling pathways and biological functions of MIF and focuses on its roles and clinical characteristics in IHD. The genetic variants of MIF associated with IHD is also discussed, providing more understandings of its complex interplay in the disease's pathology.
Collapse
Affiliation(s)
- Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - An-Xia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Disease, Urumqi, China.
| |
Collapse
|
2
|
Shen M, Gong R, Li H, Yang Z, Wang Y, Li D. Identification of key molecular markers of acute coronary syndrome using peripheral blood transcriptome sequencing analysis and mRNA-lncRNA co-expression network construction. Bioengineered 2021; 12:12087-12106. [PMID: 34753383 PMCID: PMC8809957 DOI: 10.1080/21655979.2021.2003932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Acute coronary syndrome (ACS) is a term used to describe major cardiovascular diseases, and treatment of in-stent restenosis in patients with ACS remains a major clinical challenge. Further investigation into molecular markers of ACS may aid early diagnosis, and the treatment of ACS and post-treatment recurrence. In the present study, total RNA was extracted from the peripheral blood samples of 3 patients with ACS, 3 patients with percutaneous coronary intervention (PCI)_non-restenosis, 3 patients with PCI_restenosis and 3 healthy controls. Subsequently, RNA library construction and high-throughput sequencing were performed. DESeq2 package in R was used to screen genes that were differentially expressed between the different samples. Moreover, the intersection of the differentially expressed mRNAs (DEmRNAs) and differentially expressed long noncoding RNAs (DElncRNAs) obtained. GeneCodis4.0 was used to perform function enrichment for DEmRNAs, and lncRNA-mRNA co-expression network was constructed. The GSE60993 dataset was utilized for diagnostic analysis, and the aforementioned investigations were verified using in vitro studies. Results of the present study revealed a large number of DEmRNAs and DElncRNAs in the different groups. We selected genes in the top 10 of differential expression and also involved in the co-expression of lncRNA-mRNA for diagnostic analysis in the GSE60993 dataset. The area under curve (AUC) of PDZK1IP1 (0.747), PROK2 (0.769) and LAMP3 (0.725) were all >0.7. These results indicated that the identified mRNAs and lncRNAs may act as potential clinical biomarkers, and more specifically, PDZK1IP1, PROK2 and LAMP3 may act as potential biomarkers for the diagnosis of ACS.
Collapse
Affiliation(s)
- Ming Shen
- Department of Cardiology, The First Hospital of Hebei Medical University
| | - Rui Gong
- Department of internal medicine-Endocrinology, Children's Hospital of Hebei
| | - Haibin Li
- Department of General Medicine, the Third Hospital of Hebei Medical University
| | - Zhihui Yang
- Department of General Medicine, the Third Hospital of Hebei Medical University
| | - Yunpeng Wang
- Department of General Medicine, the Third Hospital of Hebei Medical University
| | - Dandan Li
- Department of General Medicine, the Third Hospital of Hebei Medical University
| |
Collapse
|
3
|
Wu J, Guo N, Chen X. MIF associated with pulmonary hypertension susceptibility and severity in non-dialysis Chronic kidney disease patients. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220961191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pulmonary hypertension (PAH) is one of the more serious complications of Chronic kidney disease (CKD), and its exact pathogenesis has not been clarified. As an upstream proinflammatory factor, macrophage migration inhibitor (MIF) is involved in the occurrence and development of many diseases. This study aimed to detect the relationship between serum MIF and PAH in non-dialysis CKD patients. A total of 382 non-dialysis CKD patients were enrolled in this study. Bio-Plex cytokine assay was used to detect MIF. CKD patients were divided into the PAH group and non-PAH group according to echocardiographic results. Relative risk was determined by logistic regression analysis. The pulmonary artery pressure in the CKD group was higher than that in the control group ( p < 0.01). Pulmonary arterial pressure was higher in stage 4 to 5 CKD patients than in Stage 1 to 3 CKD patients ( p < 0. 01), and the incidence of PAH was also increased ( p < 0. 01). MIF in the CKD group were higher than in the control group ( p < 0.05). MIF in CKD patients with PAH were higher than those without PAH ( p < 0.05). Multivariate logistic regression analysis showed that MIF is correlated with PAH (OR = 10.745; 95% CI 2.288–89.447, p < 0.05). PAH is common in non-dialysis CKD patients, and with the deterioration of kidney disease, the incidence of PAH is gradually increased, indicating that MIF plays an important role in the development of PAH in CKD patients.
Collapse
Affiliation(s)
- Jianhua Wu
- Department of Nephrology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Naifeng Guo
- Department of Nephrology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Xiaolan Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, Jiangsu, China
| |
Collapse
|