1
|
Gong X, Chi H, Strohmer DF, Teichmann AT, Xia Z, Wang Q. Exosomes: A potential tool for immunotherapy of ovarian cancer. Front Immunol 2023; 13:1089410. [PMID: 36741380 PMCID: PMC9889675 DOI: 10.3389/fimmu.2022.1089410] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Ovarian cancer is a malignant tumor of the female reproductive system, with a very poor prognosis and high mortality rates. Chemotherapy and radiotherapy are the most common treatments for ovarian cancer, with unsatisfactory results. Exosomes are a subpopulation of extracellular vesicles, which have a diameter of approximately 30-100 nm and are secreted by many different types of cells in various body fluids. Exosomes are highly stable and are effective carriers of immunotherapeutic drugs. Recent studies have shown that exosomes are involved in various cellular responses in the tumor microenvironment, influencing the development and therapeutic efficacy of ovarian cancer, and exhibiting dual roles in inhibiting and promoting tumor development. Exosomes also contain a variety of genes related to ovarian cancer immunotherapy that could be potential biomarkers for ovarian cancer diagnosis and prognosis. Undoubtedly, exosomes have great therapeutic potential in the field of ovarian cancer immunotherapy. However, translation of this idea to the clinic has not occurred. Therefore, it is important to understand how exosomes could be used in ovarian cancer immunotherapy to regulate tumor progression. In this review, we summarize the biomarkers of exosomes in different body fluids related to immunotherapy in ovarian cancer and the potential mechanisms by which exosomes influence immunotherapeutic response. We also discuss the prospects for clinical application of exosome-based immunotherapy in ovarian cancer.
Collapse
Affiliation(s)
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Dorothee Franziska Strohmer
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany,*Correspondence: Zhijia Xia, ; Qin Wang,
| | - Qin Wang
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China,*Correspondence: Zhijia Xia, ; Qin Wang,
| |
Collapse
|
2
|
Wu H, Ganguly S, Tollefsbol TO. Modulating Microbiota as a New Strategy for Breast Cancer Prevention and Treatment. Microorganisms 2022; 10:microorganisms10091727. [PMID: 36144329 PMCID: PMC9503838 DOI: 10.3390/microorganisms10091727] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer (BC) is the most common cancer in women in the United States. There has been an increasing incidence and decreasing mortality rate of BC cases over the past several decades. Many risk factors are associated with BC, such as diet, aging, personal and family history, obesity, and some environmental factors. Recent studies have shown that healthy individuals and BC patients have different microbiota composition, indicating that microbiome is a new risk factor for BC. Gut and breast microbiota alterations are associated with BC prognosis. This review will evaluate altered microbiota populations in gut, breast tissue, and milk of BC patients, as well as mechanisms of interactions between microbiota modulation and BC. Probiotics and prebiotics are commercially available dietary supplements to alleviate side-effects of cancer therapies. They also shape the population of human gut microbiome. This review evaluates novel means of modulating microbiota by nutritional treatment with probiotics and prebiotics as emerging and promising strategies for prevention and treatment of BC. The mechanistic role of probiotic and prebiotics partially depend on alterations in estrogen metabolism, systematic immune regulation, and epigenetics regulation.
Collapse
Affiliation(s)
- Huixin Wu
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Sebanti Ganguly
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
- Integrative Center for Aging Research, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
- University Wide Microbiome Center, University of Alabama Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-934-4573; Fax: +1-205-975-6097
| |
Collapse
|
3
|
Mafi S, Mansoori B, Taeb S, Sadeghi H, Abbasi R, Cho WC, Rostamzadeh D. mTOR-Mediated Regulation of Immune Responses in Cancer and Tumor Microenvironment. Front Immunol 2022; 12:774103. [PMID: 35250965 PMCID: PMC8894239 DOI: 10.3389/fimmu.2021.774103] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022] Open
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is a downstream mediator in the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways, which plays a pivotal role in regulating numerous cellular functions including cell growth, proliferation, survival, and metabolism by integrating a variety of extracellular and intracellular signals in the tumor microenvironment (TME). Dysregulation of the mTOR pathway is frequently reported in many types of human tumors, and targeting the PI3K/Akt/mTOR signaling pathway has been considered an attractive potential therapeutic target in cancer. The PI3K/Akt/mTOR signaling transduction pathway is important not only in the development and progression of cancers but also for its critical regulatory role in the tumor microenvironment. Immunologically, mTOR is emerging as a key regulator of immune responses. The mTOR signaling pathway plays an essential regulatory role in the differentiation and function of both innate and adaptive immune cells. Considering the central role of mTOR in metabolic and translational reprogramming, it can affect tumor-associated immune cells to undergo phenotypic and functional reprogramming in TME. The mTOR-mediated inflammatory response can also promote the recruitment of immune cells to TME, resulting in exerting the anti-tumor functions or promoting cancer cell growth, progression, and metastasis. Thus, deregulated mTOR signaling in cancer can modulate the TME, thereby affecting the tumor immune microenvironment. Here, we review the current knowledge regarding the crucial role of the PI3K/Akt/mTOR pathway in controlling and shaping the immune responses in TME.
Collapse
Affiliation(s)
- Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA, United States
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
- Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Sadeghi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Reza Abbasi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR, China
- *Correspondence: Davoud Rostamzadeh, ; ; William C. Cho, ;
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- *Correspondence: Davoud Rostamzadeh, ; ; William C. Cho, ;
| |
Collapse
|
4
|
De Silva S, Tennekoon KH, Karunanayake EH. Interaction of Gut Microbiome and Host microRNAs with the Occurrence of Colorectal and Breast Cancer and Their Impact on Patient Immunity. Onco Targets Ther 2021; 14:5115-5129. [PMID: 34712050 PMCID: PMC8548058 DOI: 10.2147/ott.s329383] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Breast and colorectal cancers are two primary malignancies on which most of the research done worldwide investigates the potential genetic and environmental risk factors and thereby tries to develop therapeutic methods to improve prognosis. Breast cancer is the most diagnosed cancer type in women, while colorectal cancer is diagnosed in males as the third most and females as the second most cancer type. Though these two cancer types are predominantly seen in adult patients worldwide, in the current context, these malignancies are diagnosed at a younger age with a significant rate of incidents than previous. Such early-onset cancers are generally present at an advanced stage of the most aggressive type with a poor prognosis. In the past, the focus of the research was mainly on studying possible candidate genes to understand the onset. However, it is now recognized that genetics, epigenetics, and other environmental factors play a pivotal role in cancer susceptibility. Thus, most studies were diversified to study the behavior of host microRNAs, and the involvement of gut microbiota and good communication between them surfaced in the occurrence and state of the disease. It is understood that the impact of these factors affects the outcome of the disease. Out of the adverse outcomes identified relating to the disease, immunosuppression is one of the most concerning outcomes in the current world, where such individuals remain vulnerable to infections. Recent studies revealed that microbiome and microRNA could create a considerable impact on immunosuppression. This review focused on the behavior of host microRNAs and gut microbiome for the onset of the disease and progression, thereby influencing an individual's immunosuppression. Understanding the interactions among microRNA, microbiome, presentation of the disease, and impact on the immune system will be immensely useful for developing future therapeutic strategies based on targeting host microRNA and the patient's gut microbiome. Therapies such as inhibitory-miRNA therapies, miRNA mimic-based therapeutics, immune checkpoint blockade therapies, and bacteria-assisted tumor-targeted therapies help modulate cancer. At the same time, it paid equal attention to potential noninvasive biomarkers in diagnosis, prognosis, and therapeutics in both cancers.
Collapse
Affiliation(s)
- Sumadee De Silva
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 03, Sri Lanka
| | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 03, Sri Lanka
| | - Eric Hamilton Karunanayake
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 03, Sri Lanka
| |
Collapse
|
5
|
Investigation of miRNA dysregulation and association with immune cell profile during malignant transformation of colorectal cells. Eur J Surg Oncol 2021; 48:245-252. [PMID: 34620510 DOI: 10.1016/j.ejso.2021.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most prevalent and life-threatening cancer among the world. Accumulated somatic mutations during malignant transformation process endow cancer cells with increased growth, invasiveness and immunogenicity. These highly immunogenic cancer cells develop multiple strategies to evade immune attack. Through post-transcriptional regulation, microRNAs (miRNAs) not only participate in cancer development and progression but also manipulate anti-cancer immune response. This study aims to identify miRNAs associated with the colorectal cell malignant transformation process and their association with immune cell population using synchronous adjacent normal, polyp and CRC specimens. METHODS We conducted a Low Density Array to compare the miRNA expression profile of synchronous colorectal adenoma, adenocarcinoma and adjacent normal colon mucosa collected from 8 patients, in order to identify candidate miRNAs involved in CRC progression. These findings were further validated in 14 additional patients and GEO dataset GSE41655. The relative abundance of dendritic cells, natural killer cells, neutrophil and macrophage was determined and correlated with dysregulated miRNA levels. RESULTS MicroRNA microarray identified 39 miRNAs aberrantly expressed during the colorectal cell transformation process. Seven novel miRNAs were shortlisted, and dysregulation of miR-149-3p, miR-192-3p, miR-335-5p and miR-425 were further validated by the qPCR validation experiment and data retrieved from the GEO dataset. Furthermore, these miRNAs demonstrated certain associations with level of dendritic cells, natural killer cells, neutrophil and macrophage within the polyp or CRC specimens. CONCLUSION This study revealed miRNA dysregulated during stepwise malignant transformation of colorectal mucosal cells and their association with immune cell population.
Collapse
|
6
|
Nazari N, Jafari F, Ghalamfarsa G, Hadinia A, Atapour A, Ahmadi M, Dolati S, Rostamzadeh D. The emerging role of microRNA in regulating the mTOR signaling pathway in immune and inflammatory responses. Immunol Cell Biol 2021; 99:814-832. [PMID: 33988889 DOI: 10.1111/imcb.12477] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is considered to be an atypical protein kinase that plays a critical role in integrating different cellular and environmental inputs in the form of growth factors, nutrients and energy and, subsequently, in regulating different cellular events, including cell metabolism, survival, homeostasis, growth and cellular differentiation. Immunologically, mTOR is a critical regulator of immune function through integrating numerous signals from the immune microenvironment, which coordinates the functions of immune cells and T cell fate decisions. The crucial role of mTOR in immune responses has been lately even more appreciated. MicroRNAs (miRNAs) are endogenous, small, noncoding single-stranded RNAs that act as molecular regulators involved in multiple processes during immune cells development, homeostasis, activation and effector polarization. Several studies have recently indicated that a range of miRNAs are involved in regulating the phosphoinositide 3-kinase/protein kinase B/mTOR (PI3K/AKT/mTOR) signaling pathway by targeting multiple components of this signaling pathway and modulating the expression and function of these targets. Current evidence has revealed the interplay between miRNAs and the mTOR pathway circuits in various immune cell types. The expression of individual miRNA can affect the function of mTOR signaling to determine the cell fate decisions in immune responses through coordinating immune signaling and cell metabolism. Dysregulation of the mTOR pathway/miRNAs crosstalk has been reported in cancers and various immune-related diseases. Thus, expression profiles of dysregulated miRNAs could influence the mTOR pathway, resulting in the promotion of aberrant immunity. This review summarizes the latest information regarding the reciprocal role of the mTOR signaling pathway and miRNAs in orchestrating immune responses.
Collapse
Affiliation(s)
- Nazanin Nazari
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Jafari
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Abolghasem Hadinia
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Rostamzadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
7
|
Ahangar NK, Hemmat N, Khalaj-Kondori M, Shadbad MA, Sabaie H, Mokhtarzadeh A, Alizadeh N, Derakhshani A, Baghbanzadeh A, Dolatkhah K, Silvestris N, Baradaran B. The Regulatory Cross-Talk between microRNAs and Novel Members of the B7 Family in Human Diseases: A Scoping Review. Int J Mol Sci 2021; 22:ijms22052652. [PMID: 33800752 PMCID: PMC7962059 DOI: 10.3390/ijms22052652] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/21/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
The members of the B7 family, as immune checkpoint molecules, can substantially regulate immune responses. Since microRNAs (miRs) can regulate gene expression post-transcriptionally, we conducted a scoping review to summarize and discuss the regulatory cross-talk between miRs and new B7 family immune checkpoint molecules, i.e., B7-H3, B7-H4, B7-H5, butyrophilin like 2 (BTNL2), B7-H6, B7-H7, and immunoglobulin like domain containing receptor 2 (ILDR2). The current study was performed using a six-stage methodology structure and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. PubMed, Embase, Scopus, Cochrane, ProQuest, and Google Scholar were systematically searched to obtain the relevant records to 5 November 2020. Two authors independently reviewed the obtained records and extracted the desired data. After quantitative and qualitative analyses, we used bioinformatics approaches to extend our knowledge about the regulatory cross-talk between miRs and the abovementioned B7 family members. Twenty-seven articles were identified that fulfilled the inclusion criteria. Studies with different designs reported gene–miR regulatory axes in various cancer and non-cancer diseases. The regulatory cross-talk between the aforementioned B7 family molecules and miRs might provide valuable insights into the pathogenesis of various human diseases.
Collapse
Affiliation(s)
- Noora Karim Ahangar
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (N.K.A.); (M.K.-K.)
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (N.K.A.); (M.K.-K.)
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
| | - Hani Sabaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
- IRCCS IstitutoTumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Katayoun Dolatkhah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Nicola Silvestris
- IRCCS IstitutoTumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-3371440 (B.B.); Fax: +98-413-3371311 (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-3371440 (B.B.); Fax: +98-413-3371311 (B.B.)
| |
Collapse
|
8
|
Grenda A, Krawczyk P, Błach J, Chmielewska I, Kubiatowski T, Kieszko S, Wojas-Krawczyk K, Kucharczyk T, Jarosz B, Paśnik I, Borowiec-Bar M, Frąk M, Kieszko R, Szczyrek M, Reszka K, Krukowska K, Kolak A, Mańdziuk S, Kowalski D, Sawicki M, Świniuch D, Starosławska E, Ramlau R, Szumiło J, Krzakowski M, Milanowski J. Tissue MicroRNA Expression as a Predictor of Response to Immunotherapy in NSCLC Patients. Front Oncol 2021; 10:563613. [PMID: 33628725 PMCID: PMC7897665 DOI: 10.3389/fonc.2020.563613] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction Expression of PD-L1 protein on tumor cells, which is so far the only validated predictive factor for immunotherapy, is regulated by epigenetic and genetic factors. Among the most important ones that regulate gene expression are microRNAs. Materials and Methods The study included 60 patients with NSCLC who underwent first or second line immunotherapy with pembrolizumab or nivolumab. FFPE materials were collected before the start of immunotherapy. We examined relative expression of microRNAs (miR-141, miR-200a, miR-200b, miR-200c, miR-429, miR-508-3p, miR-1184, miR-1255a) and PD-L1 mRNA expression. Copy number variation (CNV) of PD-L1 gene by qPCR and FISH methods were assessed. Two single nucleotide polymorphisms (SNPs) in promoter region of PD-L1 gene (rs822335 and rs822336) were examined. Expression of PD-L1 protein on tumor cells was assessed by immunohistochemistry (IHC). The response rate to immunotherapy and progression free survival (PFS) measured in weeks and overall survival (OS) measured in months from the start of immunotherapy were evaluated. Results Response to immunotherapy was observed in nine patients (15%, including one complete response), disease stabilization in 22 patients (36.7%), and progression in 29 patients (48.3%). Significantly higher (p=0.015) expression of miR-200b and significantly lower (p=0.043) expression of miR-429 were observed in responders compared to patients who did not respond to immunotherapy. The median PFS in the whole group of patients was 16 weeks, and the median OS was 10.5 month. In univariate analysis, the median PFS was significantly higher in patients with high miR-200b expression (HR=0.4253, 95%CI: 0.1737–1.0417, p=0.05) and high miR-508 expression (HR=0.4401, 95%CI: 0.1903–1.0178, p=0.05) and with low expression of miR-429 (HR=0.1288, 95%CI: 0.01727–0.9606, p=0.0456) compared to patients with low and high expression of these molecules, respectively. The median OS was higher in patients with low expression of miR-429 (HR=0,6288, 95%CI: 0,3053–1,2949, p=0.06) compared with patients with high expression of this microRNA. In multivariate analysis, we found that patients with PD-L1 expression on ≥1% of tumor cells compared to patients without PD-L1 expression on cancer cells had a significantly lower risk of progression (HR=0.3857, 95%CI: 0.1612–0.9226, p=0.0323) and death (HR=0.377, 95%CI: 0.1636–0.8688, p=0.022). Conclusion The miR-200b and miR-429 molecules in tumor cells seem to have greatest impact on the effectiveness of immunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Justyna Błach
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Izabela Chmielewska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Tomasz Kubiatowski
- Department of Clinical Oncology, Saint John of Dukla Oncology Centre of the Lublin Region, Lublin, Poland
| | - Stanisław Kieszko
- Department of Clinical Oncology, Saint John of Dukla Oncology Centre of the Lublin Region, Lublin, Poland
| | - Kamila Wojas-Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Tomasz Kucharczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Bożena Jarosz
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Iwona Paśnik
- Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland
| | - Małgorzata Borowiec-Bar
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Małgorzata Frąk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Robert Kieszko
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Michał Szczyrek
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Reszka
- Genetics and Immunology Institute of Lublin, Genim LLC, Lublin, Poland
| | - Kinga Krukowska
- Genetics and Immunology Institute of Lublin, Genim LLC, Lublin, Poland
| | - Agnieszka Kolak
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, Lublin, Poland
| | - Sławomir Mańdziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, Lublin, Poland
| | - Dariusz Kowalski
- Department of Lung and Chest Cancer, The Maria Sklodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
| | - Marek Sawicki
- Department of Thoracic Surgery, Medical University of Lublin, Lublin, Poland
| | - Daria Świniuch
- Department of Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Elżbieta Starosławska
- Department of Clinical Oncology, Saint John of Dukla Oncology Centre of the Lublin Region, Lublin, Poland
| | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Justyna Szumiło
- Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland
| | - Maciej Krzakowski
- Department of Lung and Chest Cancer, The Maria Sklodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
9
|
Peruhova M, Peshevska-Sekulovska M, Krastev B, Panayotova G, Georgieva V, Konakchieva R, Nikolaev G, Velikova TV. What could microRNA expression tell us more about colorectal serrated pathway carcinogenesis? World J Gastroenterol 2020; 26:6556-6571. [PMID: 33268946 PMCID: PMC7673963 DOI: 10.3748/wjg.v26.i42.6556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
In the last two decades, the vision of a unique carcinogenesis model for colorectal carcinoma (CRC) has completely changed. In addition to the adenoma to carcinoma transition, colorectal carcinogenesis can also occur via the serrated pathway. Small non-coding RNA, known as microRNAs (miRNAs), were also shown to be involved in progression towards malignancy. Furthermore, increased expression of certain miRNAs in premalignant sessile serrated lesions (SSLs) was found, emphasizing their role in the serrated pathway progression towards colon cancer. Since miRNAs function as post-transcriptional gene regulators, they have enormous potential to be used as useful biomarkers for CRC and screening in patients with SSLs particularly. In this review, we have summarized the most relevant information about the specific role of miRNAs and their relevant signaling pathways among different serrated lesions and polyps as well as in serrated adenocarcinoma. Additional focus is put on the correlation between gut immunity and miRNA expression in the serrated pathway, which remains unstudied.
Collapse
Affiliation(s)
- Milena Peruhova
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | | | - Boris Krastev
- Department of Clinical Oncology, MHAT Hospital for Women Health Nadezhda, Sofia 1330, Bulgaria
| | - Gabriela Panayotova
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Viktoriya Georgieva
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
| | | | - Georgi Nikolaev
- Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Tsvetelina Veselinova Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Clinical Immunology, University Hospital Lozenetz, Sofia 1407, Bulgaria
| |
Collapse
|
10
|
Taheri F, Ebrahimi SO, Shareef S, Reiisi S. Regulatory and immunomodulatory role of miR-34a in T cell immunity. Life Sci 2020; 262:118209. [PMID: 32763292 DOI: 10.1016/j.lfs.2020.118209] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/25/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022]
Abstract
miRNAs are a class of non-coding RNAs and very conserve molecules that negatively regulate the expression of many genes by targeting the 3' UTR of mRNAs. miRNAs are involved in the modulation of T-cell biology during the earliest and last stages and key controllers of T-cell differentiation and function. The miR-34a, as a major hub of the regulatory network of T cells, plays an important role in T cell activation. miR-34a is widely expressed in immune cells (dendritic cells, macrophages, mast cells, B cells, and T cells) and regulates their development, function, and survival. This miRNA, by targeting over 30 genes across different cellular pathways controls immune response. miR-34a expression is controlled by p53 in transcription level. As well as, miR-34a by activating dendritic cells mediates innate immune response and increases tumor-infiltrating CD8 expression T lymphocytes. In various types of cancers and autoimmune diseases, miR-34a can regulate T cell function and become a possible significant target of microRNA-based therapy. Therefore, in this review, we focus on miR-34a-related regulatory mechanisms in T cell function and understanding mechanisms and molecules involved in this network.
Collapse
Affiliation(s)
- Forough Taheri
- Department of Genetics, Sharekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Salar Shareef
- Department of medical laboratory science, College of Sciences, University of Raparin, Ranya, Kurdistan Region, Iraq
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
11
|
Deng Y, Li Y, Fang Q, Luo H, Zhu G. microRNA-744 is downregulated in glioblastoma and inhibits the aggressive behaviors by directly targeting NOB1. Am J Cancer Res 2018; 8:2238-2253. [PMID: 30555741 PMCID: PMC6291646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023] Open
Abstract
In recent years, changes in microRNA (miRNA) expression have been detected in almost all human cancer types, including glioblastoma (GBM). Dysregulation of miRNAs may play tumor-suppressing or oncogenic roles in the initiation and progression of GBM, and may be involved in the regulation of multiple pathological behaviors. Therefore, identifying the clinical value and functional role of GBM-related miRNAs may provide effective therapeutic targets for the treatment of patients with this fatal malignancy. Dysregulation of miR-744 has been identified in several human cancer types. However, to the best of our knowledge, little is known concerning the expression pattern and biological roles of miR-744 in GBM. In this study, we found that miR-744 was significantly downregulated in GBM tissues and cell lines. Decreased miR-744 expression was significantly correlated with the Karnofsky Performance Scale (KPS) and World Health Organization (WHO) grade in GBM patients. miR-744 upregulation inhibited the proliferation, colony formation, migration, and invasion, in addition to inducing apoptosis of GBM cells in vitro. Inhibition of miR-744 had the opposite effect on these behaviors in GBM cells. Additionally, miR-744 attenuated the tumor growth of GBM cells in vivo. Furthermore, NIN1/RPN12 binding protein1 homolog (NOB1) was identified as a direct target gene of miR-744 in GBM cells. NOB1 was confirmed to be upregulated in GBM tissues, and this was inversely correlated with upregulation of miR-744 expression. Moreover, NOB1 knockdown exhibited similar inhibitory effects as miR-744 overexpression in GBM cells. Notably, recovered NOB1 expression counteracted the tumor-suppressing roles of miR-744 in the malignant phenotypes of GBM cells. Taken together, these results demonstrate that miR-744 directly targets NOB1 to inhibit the aggressive behaviors of GBM cells. Hence, the miR-744/NOB1 axis may be useful in the identification of novel therapies for GBM patients.
Collapse
Affiliation(s)
- Yifan Deng
- Department of Neurosurgery, Huizhou Municipal Central HospitalHuizhou 516000, Guangdong, P. R. China
| | - Yue Li
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, P. R. China
| | - Qi Fang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, P. R. China
| | - Honghai Luo
- Department of Neurosurgery, Huizhou Municipal Central HospitalHuizhou 516000, Guangdong, P. R. China
| | - Gang Zhu
- Department of Neurosurgery, Huizhou Municipal Central HospitalHuizhou 516000, Guangdong, P. R. China
| |
Collapse
|
12
|
曹 坤, 孙 良, 张 业, 王 腾, 李 海, 左 石. [Overpression of miR-29b suppresses the proliferation and induces apoptosis of cholangiocarcinoma cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1234-1238. [PMID: 30377134 PMCID: PMC6744069 DOI: 10.3969/j.issn.1673-4254.2018.10.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the expression of miR-29b in cholangiocarcinoma and explore its effects on cell proliferation and apoptosis of cholangiocarcinoma cells. METHODS Real-time PCR was used to detect the expression of miR-29b in cholangiocarcinoma cells line QBC939 and cholangiocarcinoma tissues. The lentiviral vector LV-hsa-miR-29b and blank vector were constructed to infect QBC939 cells. MTT assay and cell clone formation assay were performed to assess the changes in the cell proliferation and clone formation, respectively; flow cytometry was employed to evaluate the effect of miR-29b overexpression on cell cycle and apoptosis. RESULTS The expression of miR-29b was significantly down-regulated in QBC939 cells and cholangiocarcinoma tissues as compared with H-69 cells and normal tissues (P < 0.01). Compared with the blank vector, the lentiviral vector LV-hsa-miR-29b caused significantly increased expression of miR-29b in QBC939 cells (P < 0.01), which exhibited suppressed cell proliferation and clone formation (P < 0.01 or 0.05), cell cycle arrest at the S phase (P < 0.05), and significantly increased cell apoptosis (P < 0.01). CONCLUSIONS As a tumor-suppressing miRNA, miR-29b is down-regulated in cholangiocarcinoma, and its overexpression can suppress the proliferation and induce apoptosis of cholangiocarcinoma cells.
Collapse
Affiliation(s)
- 坤 曹
- 贵州医科大学附属医院 普外科,贵州 贵阳 550001Department of General Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - 良权 孙
- 贵州医科大学附属医院 肝胆外科,贵州 贵阳 550001Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - 业伟 张
- 贵州医科大学附属医院 肝胆外科,贵州 贵阳 550001Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - 腾飞 王
- 贵州医科大学附属医院 肝胆外科,贵州 贵阳 550001Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - 海洋 李
- 贵州医科大学附属医院 肝胆外科,贵州 贵阳 550001Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - 石 左
- 贵州医科大学附属医院 肝胆外科,贵州 贵阳 550001Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| |
Collapse
|