1
|
Brandt VP, Holland H, Wallenborn M, Koschny R, Frydrychowicz C, Richter M, Holland L, Nestler U, Sander C. SNP array genomic analysis of matched pairs of brain and liver metastases in primary colorectal cancer. J Cancer Res Clin Oncol 2023; 149:18173-18183. [PMID: 38010391 PMCID: PMC10725338 DOI: 10.1007/s00432-023-05505-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE Brain metastasis formation is a rare and late event in colorectal cancer (CRC) patients and associated with poor survival. In contrast to other metastatic sites, the knowledge on chromosomal aberrations in brain metastases is very limited. METHODS Therefore, we carried out single nucleotide polymorphism (SNP) array analyses on matched primary CRC and brain metastases of four patients as well as on liver metastases of three patients. RESULTS Brain metastases showed more chromosomal aberrations than primary tumors or liver metastases. Commonly occurring aberrations were gain of 8q11.1-q24.3 (primary CRC), gain of 13q12.13-q12.3 (liver metastases), and gain of 20q11.1-q13.33 (brain metastases). Furthermore, we found one copy-neutral loss of heterozygosity (cn-LOH) region on chromosome 3 in primary CRC, three cn-LOH regions in liver metastases and 23 cn-LOH regions in brain metastases, comprising 26 previously undescribed sites. CONCLUSION The more frequent occurrence of cn-LOHs and subsequently affected genes in brain metastases shed light on the pathophysiology of brain metastasis formation. Further pairwise genetic analyses between primary tumors and their metastases will help to define the role of affected genes in cn-LOH regions.
Collapse
Affiliation(s)
- Vivian-Pascal Brandt
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Saxony, Germany.
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Saxony, Germany.
| | - Heidrun Holland
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Saxony, Germany
| | - Marco Wallenborn
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Saxony, Germany
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Saxony, Germany
| | - Ronald Koschny
- Interdisciplinary Endoscopy Center (IEZ), Department of Gastroenterology and Hepatology, University Hospital Heidelberg, Heidelberg, Baden-Wuerttemberg, Germany
| | - Clara Frydrychowicz
- Paul Flechsig Institute of Neuropathology, University Medicine Leipzig, Leipzig, Saxony, Germany
| | - Mandy Richter
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Saxony, Germany
| | - Lydia Holland
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Saxony, Germany
| | - Ulf Nestler
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Saxony, Germany
| | - Caroline Sander
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Saxony, Germany
| |
Collapse
|
2
|
Zhang L, Luo P, Mao X, Sun J, Wei J, Yang Y, Zhang Y, Jiang X. Lemur tyrosine kinase 2 has a tumor-inhibition function in human glioblastoma by regulating the RUNX3/Notch pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119509. [PMID: 37271222 DOI: 10.1016/j.bbamcr.2023.119509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Deregulation of lemur tyrosine kinase 2 (LMTK2) is a vital determinant for the onset and progression of malignancies, yet the relationship between LMTK2 and glioblastoma (GBM) is undetermined. This study was carried out to determine the relevance of LMTK2 in GBM. Initiating investigation by assessing The Cancer Genome Atlas (TCGA) data showed LMTK2 mRNA levels were decreased in GBM tissue. Later examination of clinical specimens confirmed low levels of LMTK2 mRNA and protein in GBM tissue. The downregulated level of LMTK2 in patients with GBM was related to poor overall survival. A suppressive function of LMTK2 on the proliferative capability and metastatic potential of GBM cells was demonstrated by overexpressing LMTK2 in GBM cell lines. Moreover, the restoration of LMTK2 augmented the sensitivity of GBM cells to the chemotherapy drug temozolomide. The mechanistic investigation uncovered LMTK2 as a regulator of the runt-related transcription factor 3 (RUNX3)/Notch signaling pathway. The overexpression of LMTK2 increased the expression of RUNX3 while inhibiting the activation of Notch signaling. The silencing of RUNX3 diminished the regulatory role of LMTK2 on Notch signaling. The inhibition of Notch signaling reversed the LMTK2-silencing-elicited protumor effects. Importantly, LMTK2-overexpressed GBM cells displayed weakened tumorigenicity in xenograft models. Our findings illustrate that LMTK2 has a tumor-inhibition function in GBM by constraining Notch signaling via RUNX3. This work indicates the deregulation of the LMTK2-mediated RUNX3/Notch signaling pathway may be a novel molecular mechanism for the malignant transformation of GBMs. This work highlights the interest in LMTK2-related approaches for treating GBM.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurosurgery, the First Affiliated Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Peng Luo
- Department of Neurosurgery, the First Affiliated Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Xinggang Mao
- Department of Neurosurgery, the First Affiliated Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Jidong Sun
- Department of Neurosurgery, the First Affiliated Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Jialiang Wei
- Department of Neurosurgery, the First Affiliated Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Yuefan Yang
- Department of Neurosurgery, the First Affiliated Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Yanyu Zhang
- Department of Neurosurgery, the First Affiliated Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Xiaofan Jiang
- Department of Neurosurgery, the First Affiliated Hospital, Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Tu J, Chen S, Wu S, Wu T, Fan R, Kuang Z. Tumor DNA Methylation Profiles Enable Diagnosis, Prognosis Prediction, and Screening for Cervical Cancer. Int J Gen Med 2022; 15:5809-5821. [PMID: 35789774 PMCID: PMC9249661 DOI: 10.2147/ijgm.s352373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background DNA-methylation-based machine learning algorithms have demonstrated powerful diagnostic capabilities, and these tools are currently emerging in many fields of tumor diagnosis and patient prognosis prediction. This work aimed to identify novel DNA methylation diagnostic biomarkers for differentiating cervical cancer (CC) from normal tissues, as well as a prognostic prediction model to predict survival of CC patients. Methods The methylation profiles with the available clinical characteristics were downloaded from the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) program. We first screened out the differential methylation sites in CC and normal tissues and performed multiple statistical analyses to discover DNA methylation diagnostic markers that are used to distinguish CC and normal control. Then, we developed a methylation-based survival model to improve risk stratification. Results A diagnostic prediction panel consists of five CpG markers that could predict cervical cancer versus normal tissue with highly correct rate of 100%, and cg16428251, cg22341310, and cg23316360 which in diagnostic prediction panel all could yield high sensitivity and specificity for detection of CC and normal in six cohorts (area under curve [AUC] > 0.8), in addition to excellent performance in discriminating between CC and normal sample. The diagnostic marker panel also effectively predicted the CIN3 versus normal tissue with high accuracy in two datasets (AUC = 0.80, 0.789, respectively). Furthermore, a prognostic prediction model aggregated two CpG markers that effectively stratified the prognosis of high-risk and low-risk groups (training cohort: hazard ratio [HR] 4, 95% CI: 1.7–9.6, P = 0.0021; testing cohort: hazard ratio [HR] 1.9, 95% CI: 1.2–3.1, P = 0.0072). Conclusion The findings of our study showed that DNA methylation markers are of great value in the diagnosis and prognosis of CC.
Collapse
Affiliation(s)
- Jiannan Tu
- Department of Oncology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, 353000, People’s Republic of China
| | - Shengchi Chen
- Department of Oncology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, 353000, People’s Republic of China
| | - Shizhen Wu
- Department of Oncology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, 353000, People’s Republic of China
| | - Ting Wu
- Department of Oncology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, 353000, People’s Republic of China
| | - Renliang Fan
- Department of Oncology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, 353000, People’s Republic of China
| | - Zhixing Kuang
- Department of Radiation Oncology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, 353000, People’s Republic of China
- Correspondence: Zhixing Kuang, Department of Radiation Oncology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, 353000, People’s Republic of China, Email
| |
Collapse
|
4
|
Heinze K, Rengsberger M, Gajda M, Jansen L, Osmers L, Oliveira-Ferrer L, Schmalfeldt B, Dürst M, Häfner N, Runnebaum IB. CAMK2N1/RUNX3 methylation is an independent prognostic biomarker for progression-free and overall survival of platinum-sensitive epithelial ovarian cancer patients. Clin Epigenetics 2021; 13:15. [PMID: 33482905 PMCID: PMC7824928 DOI: 10.1186/s13148-021-01006-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To date, no predictive or prognostic molecular biomarkers except BRCA mutations are clinically established for epithelial ovarian cancer (EOC) despite being the deadliest gynecological malignancy. Aim of this biomarker study was the analysis of DNA methylation biomarkers for their prognostic value independent from clinical variables in a heterogeneous cohort of 203 EOC patients from two university medical centers. RESULTS The marker combination CAMK2N1/RUNX3 exhibited a significant prognostic value for progression-free (PFS) and overall survival (OS) of sporadic platinum-sensitive EOC (n = 188) both in univariate Kaplan-Meier (LogRank p < 0.05) and multivariate Cox regression analysis (p < 0.05; hazard ratio HR = 1.587). KRT86 methylation showed a prognostic value only in univariate analysis because of an association with FIGO staging (Fisher's exact test p < 0.01). Thus, it may represent a marker for EOC staging. Dichotomous prognostic values were observed for KATNAL2 methylation depending on BRCA aberrations. KATNAL2 methylation exhibited a negative prognostic value for PFS in sporadic EOC patients without BRCA1 methylation (HR 1.591, p = 0.012) but positive prognostic value in sporadic EOC with BRCA1 methylation (HR 0.332, p = 0.04) or BRCA-mutated EOC (HR 0.620, n.s.). CONCLUSION The retrospective analysis of 188 sporadic platinum-sensitive EOC proved an independent prognostic value of the methylation marker combination CAMK2N1/RUNX3 for PFS and OS. If validated prospectively this combination may identify EOC patients with worse prognosis after standard therapy potentially benefiting from intensive follow-up, maintenance therapies or inclusion in therapeutic studies. The dichotomous prognostic value of KATNAL2 should be validated in larger sample sets of EOC.
Collapse
Affiliation(s)
- Karolin Heinze
- Department of Gynecology and Reproduction Medicine, Jena University Hospital-Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Matthias Rengsberger
- Department of Gynecology and Reproduction Medicine, Jena University Hospital-Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Mieczyslaw Gajda
- Department of Forensic Medicine, Section of Pathology, Jena University Hospital - Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Lars Jansen
- Department of Gynecology and Reproduction Medicine, Jena University Hospital-Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Linea Osmers
- Department of Gynecology and Reproduction Medicine, Jena University Hospital-Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Leticia Oliveira-Ferrer
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Barbara Schmalfeldt
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Matthias Dürst
- Department of Gynecology and Reproduction Medicine, Jena University Hospital-Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Norman Häfner
- Department of Gynecology and Reproduction Medicine, Jena University Hospital-Friedrich Schiller University Jena, 07747, Jena, Germany.
| | - Ingo B Runnebaum
- Department of Gynecology and Reproduction Medicine, Jena University Hospital-Friedrich Schiller University Jena, 07747, Jena, Germany.
| |
Collapse
|