1
|
Sadhonider U, Nath J, Darabdhara G, Baruah A, Saikia L, Sarmah BJ. In Situ Stabilization of Bi Nanoparticles into the Nanopores of Modified Montmorillonite: Efficient Heterogeneous Catalysts for Reduction of 4-Nitrophenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24281-24291. [PMID: 39497489 DOI: 10.1021/acs.langmuir.4c02477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Here, we report the in situ generation of Bi nanoparticles (BiNPs) into a nanoporous matrix by impregnation of bismuth chloride and subsequent reduction with sodium borohydride. The nanoporous matrix was created by acid activation of natural montmorillonite clay under controlled conditions with the aim that it may serve as a host for BiNPs. The characterization of stabilized BiNPs was done by using Fourier-transform infrared (FTIR), powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and field emission scanning electron microscopy-energy dispersive X-ray (FESEM-EDX) techniques. The TEM study reveals that the BiNPs with an average particle size of 7.16 nm are well-distributed on the surface of the acid-activated montmorillonite clay. The synthesized BiNPs exhibited excellent catalytic activity for the degradation of 4-nitrophenol (4-NP) in aqueous medium with remarkable results. The degradation of 4-NP to 4-aminophenol (4-AP) at 25 °C, in the presence of sodium borohydride, brought about almost 100% conversion in 6 min with a rate constant of 0.20098 s-1 that follows the pseudo-first-order kinetics.
Collapse
Affiliation(s)
- Utpal Sadhonider
- Department of Chemistry, Kakojan College, Kakojan, Jorhat 785107, Assam, India
- Research Scholar, Assam Science and Technology University, Jalukbari 781013, Assam, India
| | - Jayashree Nath
- Department of Chemistry, Jagannath Barooah University, Jorhat 785001, Assam, India
| | - Gitashree Darabdhara
- Department of Chemistry, Jagannath Barooah University, Jorhat 785001, Assam, India
| | - Arabinda Baruah
- Department of Chemistry, Gauhati University, Jalukbari 781014, Assam, India
| | - Lakshi Saikia
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-NEIST, Jorhat 785006, Assam, India
| | - Bhaskar Jyoti Sarmah
- Department of Chemistry, Barak Valley Engineering College, Karimganj 788701, Assam, India
| |
Collapse
|
2
|
Huang J, Bao H, Li X, Zhang Z. In vivo
CT imaging tracking of stem cells labeled with Au nanoparticles. VIEW 2022. [DOI: 10.1002/viw.20200119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jie Huang
- CAS Key Laboratory of Nano‐Bio Interface, Division of Nanobiomedicine Suzhou Institute of Nano‐Tech and Nano‐bionics, Chinese Academy of Sciences Suzhou China
- School of Nano‐Tech and Nano‐Bionics University of Science and Technology of China Hefei China
| | - Hongying Bao
- CAS Key Laboratory of Nano‐Bio Interface, Division of Nanobiomedicine Suzhou Institute of Nano‐Tech and Nano‐bionics, Chinese Academy of Sciences Suzhou China
- School of Nano‐Tech and Nano‐Bionics University of Science and Technology of China Hefei China
| | - Xiaodi Li
- CAS Key Laboratory of Nano‐Bio Interface, Division of Nanobiomedicine Suzhou Institute of Nano‐Tech and Nano‐bionics, Chinese Academy of Sciences Suzhou China
- School of Nano‐Tech and Nano‐Bionics University of Science and Technology of China Hefei China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano‐Bio Interface, Division of Nanobiomedicine Suzhou Institute of Nano‐Tech and Nano‐bionics, Chinese Academy of Sciences Suzhou China
- School of Nano‐Tech and Nano‐Bionics University of Science and Technology of China Hefei China
| |
Collapse
|
3
|
Ribeiro AL, Bassai LW, Robert AW, Machado TN, Bezerra AG, Horinouchi CDDS, Aguiar AMD. Bismuth-based nanoparticles impair adipogenic differentiation of human adipose-derived mesenchymal stem cells. Toxicol In Vitro 2021; 77:105248. [PMID: 34560244 DOI: 10.1016/j.tiv.2021.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 11/27/2022]
Abstract
Bismuth-based nanoparticles (BiNPs) have attracted attention for their potential biomedical applications. However, there is a lack of information concerning their interaction with biological systems. In this study, it was investigated the effect of physically synthesized BiNPs to human adipose-derived stem cells (ADSCs). We first evaluated the influence of BiNPs on cell viability, cell morphology, mitochondrial function and cell proliferation. Further, the impact of BiNPs on adipogenic differentiation was also explored. Cytotoxicity assays have demonstrated that BiNPs did not reduce relative cell viability of ADSC except at the highest tested concentration (345 μg/ml). Analysis of cell morphology performed by transmission electron microscopy confirmed that BiNPs induced cell damage only at a high concentration (302.24 μg/ml), equivalent to IC50 concentration. Moreover, BiNPs exposure increased the expression of the cell proliferation marker Ki-67 and the incorporation of the thymidine analogue EdU into cell DNA, suggesting that these nanoparticles could be stimulating ADSC proliferation. BiNPs also increased the mitochondrial membrane potential. Furthermore, BiNPs reduced ADSC adipogenic differentiation as measured by lipid droplet accumulation and mRNA expression levels of the specific adipogenesis biomarkers PPARγ, C/EPBɑ and FABP4. Thus, BiNPs affect the nonspecific (viability, proliferation and mitochondrial activity) and specific (adipogenesis) cellular mechanisms of ADSCs.
Collapse
Affiliation(s)
- Annanda Lyra Ribeiro
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, Paraná, Brazil
| | - Letícia Werzel Bassai
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, Paraná, Brazil; Laboratório de Cultivo de Eucariotos, Instituto de Biologia Molecular do Paraná, Curitiba, Paraná, Brazil
| | - Anny Waloski Robert
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, Paraná, Brazil
| | - Thiago Neves Machado
- Laboratório FotoNanoBio, Universidade Tecnológica Federal do Paraná, Curitiba, Paraná, Brazil
| | - Arandi Ginane Bezerra
- Laboratório FotoNanoBio, Universidade Tecnológica Federal do Paraná, Curitiba, Paraná, Brazil
| | | | - Alessandra Melo de Aguiar
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, Paraná, Brazil; Rede de Plataformas Tecnológicas FIOCRUZ - Bioensaios com Métodos Alternativos em Citotoxicidade, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
4
|
Sohail M, Guo W, Li Z, Xu H, Zhao F, Chen D, Fu F. Nanocarrier-based Drug Delivery System for Cancer Therapeutics: A Review of the Last Decade. Curr Med Chem 2021; 28:3753-3772. [PMID: 33019919 DOI: 10.2174/0929867327666201005111722] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 11/22/2022]
Abstract
In recent years, due to the shortcomings of conventional chemotherapy, such as poor bioavailability, low treatment index, and unclear side effects, the focus of cancer research has shifted to new nanocarriers of chemotherapeutic drugs. By using biodegradable materials, nanocarriers generally have the advantages of good biocompatibility, low side effects, targeting, controlled release profile, and improved efficacy. More to the point, nanocarrier based anti-cancer drug delivery systems clearly show the potential to overcome the problems associated with conventional chemotherapy. In order to promote the in-depth research and development in this field, we herein summarized and analyzed various nanocarrier based drug delivery systems for cancer therapy, including the concepts, types, characteristics, and preparation methods. The active and passive targeting mechanisms of cancer therapy were also included, along with a brief introduction of the research progress of nanocarriers used for anti-cancer drug delivery in the past decade.
Collapse
Affiliation(s)
- Muhammad Sohail
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Wenna Guo
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Zhiyong Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Feng Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Daquan Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Fenghua Fu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| |
Collapse
|
5
|
Targonska S, Sikora M, Marycz K, Smieszek A, Wiglusz RJ. Theranostic Applications of Nanostructured Silicate-Substituted Hydroxyapatite Codoped with Eu 3+ and Bi 3+ Ions-A Novel Strategy for Bone Regeneration. ACS Biomater Sci Eng 2020; 6:6148-6160. [PMID: 33449662 DOI: 10.1021/acsbiomaterials.0c00824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this paper, nanocrystalline silicate-substituted hydroxyapatites (nSi-HAps) codoped with Eu3+ were functionalized with Bi3+ ions. Biomaterials were synthesized using a microwave-assisted hydrothermal method and heat-treated at 700 °C. The concentration of Eu3+ ions was established at 1 mol %, and the concentration of Bi3+ was in the range of 0.5-2 mol %. The physicochemical properties of the obtained biomaterials were determined using previously established methods, including X-ray powder diffraction, scanning electron microscopy techniques, and IR spectroscopy. Particle sizes obtained in this study were in the range of 22-65 nm, which was established by the Rietveld method. The luminescence properties of the Eu3+ ion-doped silicate-substituted apatite were recorded depending on the bismuth(III) concentration. The cytocompatibility of obtained biomaterials was tested using the model of mouse pre-osteoblasts cell line, that is, MC3T3-E1. We showed that the obtained biomaterials exerted anti-apoptotic effect, reducing the number of early and late apoptotic cells and decreasing caspase activity and reactive oxygen species accumulation. The transcripts levels of genes associated with apoptosis confirmed the anti-apoptotic effect of the biomaterials. Increased metabolic activity of MC3T3-E1 in cultures with biomaterials functionalized with Bi3+ ions has been observed. Moreover, the determined profile of osteogenic markers indicates that the obtained matrices, that is, Eu3+:nSi-HAp functionalized with Bi3+ ions, exert pro-osteogenic properties. The biological features of Eu3+:nSi-HAp modified with Bi3+ ions are highly desired in terms of functional tissue restoration and further efficient osteointegration.
Collapse
Affiliation(s)
- Sara Targonska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
| | - Mateusz Sikora
- The Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences Wroclaw, 38C Chelmonskiego Street, 50-630 Wroclaw, Poland
| | - Krzysztof Marycz
- The Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences Wroclaw, 38C Chelmonskiego Street, 50-630 Wroclaw, Poland.,International Institute of Translational Medicine, Jesionowa 11 Street, 55-124 Malin, Poland.,Collegium Medicum, Institute of Medical Science, Cardinal Stefan Wyszynski University (UKSW), Woycickiego 1/3, 01-938 Warsaw, Poland
| | - Agnieszka Smieszek
- The Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences Wroclaw, 38C Chelmonskiego Street, 50-630 Wroclaw, Poland
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland.,Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okolna 2, 50-950 Wroclaw, Poland
| |
Collapse
|
6
|
Wang F, Zhou P, Li K, Mamtilahun M, Tang Y, Du G, Deng B, Xie H, Yang G, Xiao T. Sensitive imaging of intact microvessels in vivo with synchrotron radiation. IUCRJ 2020; 7:793-802. [PMID: 32939271 PMCID: PMC7467167 DOI: 10.1107/s2052252520008234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/22/2020] [Indexed: 05/13/2023]
Abstract
Early stages of diseases, including stroke, hypertension, angiogenesis of tumours, spinal cord injuries, etc., are closely associated with the lesions of microvasculature. Rodent models of human vascular diseases are extensively used for the preclinical investigation of the disease evolution and therapy with synchrotron radiation. Therefore, non-invasive and in vivo X-ray imaging with high sensitivity and clarity is desperately needed to visualize the microvessels in live-animal models. Contrast agent is essential for the in vivo X-ray imaging of vessels and angiomatous tissue. Because of the non-rigid motion of adjacent tissues, the short circulation time and the intermittent flow of contrast agents in vessels, it is a great challenge for the traditional X-ray imaging methods to achieve well defined images of microvessels in vivo. In this article, move contrast X-ray imaging (MCXI) based on high-brightness synchrotron radiation is developed to overcome the intrinsic defects in conventional methods. Experiments with live rodents demonstrate the practicability of the MCXI method for sensitive and intact imaging of microvessels in vivo.
Collapse
Affiliation(s)
- Feixiang Wang
- Shanghai Synchrotron Radiation Facility/Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People’s Republic of China
| | - Panting Zhou
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
| | - Ke Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Muyassar Mamtilahun
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
| | - Yaohui Tang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
| | - Guohao Du
- Shanghai Synchrotron Radiation Facility/Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People’s Republic of China
| | - Biao Deng
- Shanghai Synchrotron Radiation Facility/Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People’s Republic of China
| | - Honglan Xie
- Shanghai Synchrotron Radiation Facility/Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People’s Republic of China
| | - Guoyuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
| | - Tiqiao Xiao
- Shanghai Synchrotron Radiation Facility/Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People’s Republic of China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|