1
|
Pinheiro FC, Bortolotto VC, Araujo SM, Dahleh MMM, Neto JSS, Zeni G, Zaha A, Prigol M. Antimicrobial Effect of Diphenyl Ditelluride (PhTe) 2 in a Model of Infection by Escherichia coli in Drosophila melanogaster. Indian J Microbiol 2024; 64:1619-1626. [PMID: 39678956 PMCID: PMC11645334 DOI: 10.1007/s12088-024-01196-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/02/2024] [Indexed: 12/17/2024] Open
Abstract
Diphenyl ditelluride (PhTe)2, an organotelluric compound with pharmacological and toxicological attributes, has shown promise in microorganism studies. Drosophila melanogaster, an alternative animal model, is gaining popularity for novel antimicrobial research due to its cost-effectiveness, versatility, and similarity to vertebrate models. Given the rising antibiotic resistance, particularly in Escherichia coli (E. coli), the exploration of novel antimicrobials is of utmost importance. In (PhTe)2 safety validation, our findings indicate an 50% lethal concentration (LC50) of 41.74 µM for (PhTe)2 following a 48-h exposure period in Drosophila melanogaster. To assess potential motor and neurological deficits, we conducted behavioral analyses employing negative geotaxis and open field tests. Our outcomes reveal alterations in exploratory behavior at concentrations exceeding 50 µM (PhTe)2 in the flies. Consequently, we have established the optimal treatment concentration for Drosophila melanogaster as 10 µM (PhTe)2. Upon safety validation, we gauged the antimicrobial potential of (PhTe)2 through an oral infection model involving axenic flies. After exposing these flies to E. coli for 18-20 h, we treated them with 10 µM of (PhTe)2 for various time spans (0, 3, 6, 12, 24, and 48 h), followed by plating and colony counting. The logarithmic bacterial load curve demonstrated the antimicrobial impact of the compound, highlighting a significant reduction in bacterial load after 3 h of exposure to 10 µM (PhTe)2, with an enhancement of antimicrobial potential lasting up to 48 h. Given these results, we state that 10 µM (PhTe)2 was safe and presented antimicrobial potential, reducing the bacterial load in Drosophila melanogaster. Graphical Abstract
Collapse
Affiliation(s)
- Franciane Cabral Pinheiro
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas –Unipampa, Universidade Federal do Pampa - Campus Itaqui, Rua Luiz Joaquim de Sá Britto, s/n - Bairro: Promorar, Itaqui, Rio Grande do Sul 97650-000 Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas –Unipampa, Universidade Federal do Pampa - Campus Itaqui, Rua Luiz Joaquim de Sá Britto, s/n - Bairro: Promorar, Itaqui, Rio Grande do Sul 97650-000 Brazil
| | - Stífani Machado Araujo
- Laboratório de BioSaúde Humana e Animal, Universidade Federal da Fronteira Sul, Realeza, PR 85770-000 Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas –Unipampa, Universidade Federal do Pampa - Campus Itaqui, Rua Luiz Joaquim de Sá Britto, s/n - Bairro: Promorar, Itaqui, Rio Grande do Sul 97650-000 Brazil
| | | | - Gilson Zeni
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900 Brazil
| | - Arnaldo Zaha
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas –Unipampa, Universidade Federal do Pampa - Campus Itaqui, Rua Luiz Joaquim de Sá Britto, s/n - Bairro: Promorar, Itaqui, Rio Grande do Sul 97650-000 Brazil
| |
Collapse
|
2
|
Gomes LS, Costa ÉDO, Duarte TG, Charret TS, Castiglione RC, Simões RL, Pascoal VDB, Döring TH, da Silva FDC, Ferreira VF, S. de Oliveira A, Pascoal ACRF, Cruz AL, Nascimento V. New Chalcogen-Functionalized Naphthoquinones: Design, Synthesis, and Evaluation, In Vitro and In Silico, against Squamous Cell Carcinoma. ACS OMEGA 2024; 9:21948-21963. [PMID: 38799368 PMCID: PMC11112715 DOI: 10.1021/acsomega.3c10134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Due to the growth in the number of patients and the complexity involved in anticancer therapies, new therapeutic approaches are urgent and necessary. In this context, compounds containing the selenium atom can be employed in developing new medicines due to their potential therapeutic efficacy and unique modes of action. Furthermore, tellurium, a previously unknown element, has emerged as a promising possibility in chalcogen-containing compounds. In this study, 13 target compounds (9a-i, 10a-c, and 11) were effectively synthesized as potential anticancer agents, employing a CuI-catalyzed Csp-chalcogen bond formation procedure. The developed methodology yielded excellent results, ranging from 30 to 85%, and the compounds were carefully characterized. Eight of these compounds showed promise as potential therapeutic drugs due to their high yields and remarkable selectivity against SCC-9 cells (squamous cell carcinoma). Compound 10a, in particular, demonstrated exceptional selectivity, making it an excellent choice for cancer cell targeting while sparing healthy cells. Furthermore, complementing in silico and molecular docking studies shed light on their physical features and putative modes of action. This research highlights the potential of these compounds in anticancer treatments and lays the way for future drug development efforts.
Collapse
Affiliation(s)
- Luana
da Silva Gomes
- SupraSelen
Laboratory, Department of Organic Chemistry, Institute of Chemistry, Federal University Fluminense, Campus of Valonguinho, Niterói-RJ 24020-141, Brazil
| | - Érica de Oliveira Costa
- SupraSelen
Laboratory, Department of Organic Chemistry, Institute of Chemistry, Federal University Fluminense, Campus of Valonguinho, Niterói-RJ 24020-141, Brazil
| | - Thuany G. Duarte
- SupraSelen
Laboratory, Department of Organic Chemistry, Institute of Chemistry, Federal University Fluminense, Campus of Valonguinho, Niterói-RJ 24020-141, Brazil
| | - Thiago S. Charret
- Research
Laboratory of Natural Products and Bioactive Molecules, Nova Friburgo
Health Institute, Fluminense Federal University
(ISNF-UFF), Nova Friburgo-RJ 28625-650, Brazil
| | - Raquel C. Castiglione
- Laboratory
for Clinical and Experimental Research on Vascular Biology, Biomedical
Center, State University of Rio de Janeiro, Rio de Janeiro-RJ 20550-900, Brazil
| | - Rafael L. Simões
- Laboratory
of Molecular and Cellular Pharmacology, Roberto Alcântara Gomes
Biology Institute, State University of Rio
de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Vinicius D. B. Pascoal
- Research
Laboratory of Natural Products and Bioactive Molecules, Nova Friburgo
Health Institute, Fluminense Federal University
(ISNF-UFF), Nova Friburgo-RJ 28625-650, Brazil
| | - Thiago H. Döring
- Department
of Exact Sciences and Education, Federal
University of Santa Catarina, Campus Blumenau, Blumenau-SC, 89036-256, Brazil
| | - Fernando de C. da Silva
- Applied Organic
Synthesis Laboratory (LabSOA), Institute of Chemistry, Universidade Federal Fluminense, Niterói-RJ 24020-141, Brazil
| | - Vitor F. Ferreira
- Department
of Exact Sciences and Education, Federal
University of Santa Catarina, Campus Blumenau, Blumenau-SC 89036-256, Brazil
| | - Aldo S. de Oliveira
- Department
of Exact Sciences and Education, Federal
University of Santa Catarina, Campus Blumenau, Blumenau-SC, 89036-256, Brazil
| | - Aislan C. R. F. Pascoal
- Research
Laboratory of Natural Products and Bioactive Molecules, Nova Friburgo
Health Institute, Fluminense Federal University
(ISNF-UFF), Nova Friburgo-RJ 28625-650, Brazil
| | - André L.
S. Cruz
- Physiopathology
Laboratory, Institute of Medical Sciences, Multidisciplinary Center
UFRJ, Federal University of Rio De Janeiro
(UFRJ), Macaé-RJ 27930-560, Brazil
| | - Vanessa Nascimento
- SupraSelen
Laboratory, Department of Organic Chemistry, Institute of Chemistry, Federal University Fluminense, Campus of Valonguinho, Niterói-RJ 24020-141, Brazil
| |
Collapse
|
3
|
Sári D, Ferroudj A, Semsey D, El-Ramady H, Brevik EC, Prokisch J. Tellurium and Nano-Tellurium: Medicine or Poison? NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:670. [PMID: 38668165 PMCID: PMC11053935 DOI: 10.3390/nano14080670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Tellurium (Te) is the heaviest stable chalcogen and is a rare element in Earth's crust (one to five ppb). It was discovered in gold ore from mines in Kleinschlatten near the present-day city of Zlatna, Romania. Industrial and other applications of Te focus on its inorganic forms. Tellurium can be toxic to animals and humans at low doses. Chronic tellurium poisoning endangers the kidney, liver, and nervous system. However, Te can be effective against bacteria and is able to destroy cancer cells. Tellurium can also be used to develop redox modulators and enzyme inhibitors. Soluble salts that contain Te had a role as therapeutic and antimicrobial agents before the advent of antibiotics. The pharmaceutical use of Te is not widespread due to the narrow margin between beneficial and toxic doses, but there are differences between the measure of toxicity based on the Te form. Nano-tellurium (Te-NPs) has several applications: it can act as an adsorptive agent to remove pollutants, and it can be used in antibacterial coating, photo-catalysis for the degradation of dyes, and conductive electronic materials. Nano-sized Te particles are the most promising and can be produced in both chemical and biological ways. Safety assessments are essential to determine the potential risks and benefits of using Te compounds in various applications. Future challenges and directions in developing nano-materials, nano-alloys, and nano-structures based on Te are still open to debate.
Collapse
Affiliation(s)
- Daniella Sári
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| | - Aya Ferroudj
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| | - Dávid Semsey
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| | - Hassan El-Ramady
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Eric C. Brevik
- College of Agricultural, Life, and Physical Sciences, Southern Illinois University, Carbondale, IL 62901, USA;
| | - József Prokisch
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| |
Collapse
|
4
|
Chang Y, Huang J, Shi S, Xu L, Lin H, Chen T. Precise Engineering of a Se/Te Nanochaperone for Reinvigorating Cancer Radio-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212178. [PMID: 37204161 DOI: 10.1002/adma.202212178] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Facilely synthesized nanoradiosensitizers with well-controlled structure and multifunctionality are greatly desired to address the challenges of cancer radiotherapy. In this work, a universal method is developed for synthesizing chalcogen-based TeSe nano-heterojunctions (NHJs) with rod-, spindle-, or dumbbell-like morphologies by engineering the surfactant and added selenite. Interestingly, dumbbell-shaped TeSe NHJs (TeSe NDs) as chaperone exhibit better radio-sensitizing activities than the other two nanostructural shapes. Meanwhile, TeSe NDs can serve as cytotoxic chemodrugs that degrade to highly toxic metabolites in acidic environment and deplete GSH within tumor to facilitate radiotherapy. More importantly, the combination of TeSe NDs with radiotherapy significantly decreases regulatory T cells and M2-phenotype tumor-associated macrophage infiltrations within tumors to reshape the immunosuppressive microenvironment and induce robust T lymphocytes-mediated antitumor immunity, resulting in great abscopal effects on combating distant tumor progression. This study provides a universal method for preparing NHJ with well-controlled structure and developing nanoradiosensitizers to overcome the clinical challenges of cancer radiotherapy.
Collapse
Affiliation(s)
- Yanzhou Chang
- Department of Chemistry, College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jiarun Huang
- Department of Chemistry, College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Sujiang Shi
- Department of Chemistry, College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Ligeng Xu
- Department of Chemistry, College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Hao Lin
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Tianfeng Chen
- Department of Chemistry, College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| |
Collapse
|
5
|
Juchem ALM, Trindade C, da Silva JB, Machado MDS, Guecheva TN, Rocha JC, Saffi J, de Oliveira IM, Henriques JAP, Escargueil A. Diphenyl ditelluride anticancer activity and DNA topoisomerase I poisoning in human colon cancer HCT116 cells. Oncotarget 2023; 14:637-649. [PMID: 37343056 DOI: 10.18632/oncotarget.28465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Diphenyl ditelluride (DPDT) is an organotellurium (OT) compound with pharmacological properties, including antioxidant, antigenotoxic and antimutagenic activities when applied at low concentrations. However, DPDT as well as other OT compounds also show cytotoxicity against mammalian cells when treatments occur at higher drug concentrations. Considering that the underlying mechanisms of toxicity of DPDT against tumor cells have been poorly explored, the objective of our study was to investigate the effects of DPDT against both human cancer and non-tumorigenic cells. As a model, we used the colonic HCT116 cancer cells and the MRC5 fibroblasts. Our results showed that DPDT preferentially targets HCT116 cancer cells when compared to MRC5 cells with IC50 values of 2.4 and 10.1 μM, respectively. This effect was accompanied by the induction of apoptosis and a pronounced G2/M cell cycle arrest in HCT116 cells. Furthermore, DPDT induces DNA strand breaks at concentrations below 5 μM in HCT116 cells and promotes the occurrence of DNA double strand breaks mostly during S-phase as measured by γ-H2AX/EdU double staining. Finally, DPDT forms covalent complexes with DNA topoisomerase I, as observed by the TARDIS assay, with a more prominent effect observed in HCT116 than in MRC5 cells. Taken together, our results show that DPDT preferentially targets HCT116 colon cancer cells likely through DNA topoisomerase I poisoning. This makes DPDT an interesting molecule for further development as an anti-proliferative compound in the context of cancer.
Collapse
Affiliation(s)
- André Luiz Mendes Juchem
- Department of Biophysics/Postgraduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris F-75012, France
| | - Cristiano Trindade
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre - RS, Brazil
| | - Juliana Bondan da Silva
- Department of Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Miriana da Silva Machado
- Department of Biophysics/Postgraduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Temenouga Nikolova Guecheva
- Department of Biophysics/Postgraduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Jaqueline Cesar Rocha
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre - RS, Brazil
| | - Jenifer Saffi
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre - RS, Brazil
| | - Iuri Marques de Oliveira
- Department of Biophysics/Postgraduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Antonio Pêgas Henriques
- Department of Biophysics/Postgraduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Postgraduate Program in Biotechnology and Medical Sciences, University of Vale do Taquari - UNIVATES, Lajeado - RS, Brazil
| | - Alexandre Escargueil
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris F-75012, France
| |
Collapse
|
6
|
Oxidative stress response system in Escherichia coli arising from diphenyl ditelluride (PhTe) 2 exposure. Toxicol In Vitro 2022; 83:105404. [PMID: 35654257 DOI: 10.1016/j.tiv.2022.105404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/25/2022] [Accepted: 05/26/2022] [Indexed: 11/20/2022]
Abstract
The toxicity of diphenyl ditelluride (PhTe)2 is associated with its ability to oxidize sulfhydryl groups from biological molecules. Therefore, we evaluated possible molecular mechanisms of toxicity induced by this organochalcogen in Escherichia coli (E. coli) by evaluating oxidative damage markers, relative expression of genes associated with the cellular redox state in bacteria, such as katG, sodA, sodB, soxS, and oxyR, as well as the activity of enzymes responsible for cellular redox balance. After exposure of (PhTe)2 (6, 12, and 24 μg/mL), there was a decrease in non-protein thiols (NPSH) levels, an increase in protein carbonylation and lipid peroxidation in E. coli. Intra- and extracellular reactive species (RS) was increased at concentrations of 6, 12, and 24 μg/mL. The superoxide dismutase (SOD) activity was increased at the three concentrations tested, while catalase (CAT) activity was higher at 12 and 24 μg/mL. The soxS gene showed lower expression at the three concentrations tested, while the oxyR gene was supressed at 24 μg/mL. The katG antioxidant response gene showed lower expression, and sodA and sodB were positively activated, except for sodB at 6 μg/mL. Our findings demonstrate that exposure to (PhTe)2 induced RS formation, NPSH depletion and changes in transcriptional factors regulation, characterizing it as a multi-target compound, causing disruption in cellular oxidative state, as well as molecular mechanisms associated in E. coli.
Collapse
|
7
|
Del Giudice L, Alifano P, Calcagnile M, Di Schiavi E, Bertapelle C, Aletta M, Pontieri P. Mitochondrial ribosomal protein genes connected with Alzheimer's and tellurite toxicity. Mitochondrion 2022; 64:45-58. [PMID: 35218961 DOI: 10.1016/j.mito.2022.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022]
Abstract
Mitochondrial diseases are a group of genetic disorders characterized by dysfunctional mitochondria. Within eukaryotic cells, mitochondria contain their own ribosomes, which synthesize small amounts of proteins, all of which are essential for the biogenesis of the oxidative phosphorylation system. The ribosome is an evolutionarily conserved macromolecular machine in nature both from a structural and functional point of view, universally responsible for the synthesis of proteins. Among the diseases afflicting humans, those of ribosomal origin - either cytoplasmic ribosomes (80S) or mitochondrial ribosomes (70S) - are relevant. These are inherited or acquired diseases most commonly caused by either ribosomal protein haploinsufficiency or defects in ribosome biogenesis. Here we review the scientific literature about the recent advances on changes in mitochondrial ribosomal structural and assembly proteins that are implicated in primary mitochondrial diseases and neurodegenerative disorders, and their possible connection with metalloid pollution and toxicity, with a focus on MRPL44, NAM9 (MNA6) and GEP3 (MTG3), whose lack or defect was associated with resistance to tellurite. Finally, we illustrate the suitability of yeast Saccharomyces cerevisiae (S.cerevisiae) and the nematode Caenorhabditis elegans (C.elegans) as model organisms for studying mitochondrial ribosome dysfunctions including those involved in human diseases.
Collapse
Affiliation(s)
- Luigi Del Giudice
- Istituto di Bioscienze e BioRisorse-UOS Napoli-CNR c/o Dipartimento di Biologia, Sezione di Igiene, Napoli 80134, Italy.
| | - Pietro Alifano
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce 73100, Italy
| | - Matteo Calcagnile
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce 73100, Italy
| | | | | | | | - Paola Pontieri
- Istituto di Bioscienze e BioRisorse-UOS Napoli-CNR c/o Dipartimento di Biologia, Sezione di Igiene, Napoli 80134, Italy
| |
Collapse
|