1
|
Li X, Ma Y, Xue Y, Zhang X, Lv L, Quan Q, Chen Y, Yu G, Liang Z, Zhang X, Weng D, Chen L, Chen K, Han X, Wang J. High-Throughput and Efficient Intracellular Delivery Method via a Vibration-Assisted Nanoneedle/Microfluidic Composite System. ACS NANO 2023; 17:2101-2113. [PMID: 36479877 DOI: 10.1021/acsnano.2c07852] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intracellular delivery and genetic modification have brought a significant revolutionary to tumor immunotherapy, yet existing methods are still limited by low delivery efficiency, poor throughput, excessive cell damage, or unsuitability for suspension immune cells, specifically the natural killer cell, which is highly resistant to transfection. Here, we proposed a vibration-assisted nanoneedle/microfluidic composite system that uses large-area nanoneedles to rapidly puncture and detach the fast-moving suspension cells in the microchannel under vibration to achieve continuous high-throughput intracellular delivery. The nanoneedle arrays fabricated based on the large-area self-assembly technique and microchannels can maximize the delivery efficiency. Cas9 ribonucleoprotein complexes (Cas9/RNPs) can be delivered directly into cells due to the sufficient cellular membrane nanoperforation size; for difficult-to-transfect immune cells, the delivery efficiency can be up to 98%, while the cell viability remains at about 80%. Moreover, the throughput is demonstrated to maintain a mL/min level, which is significantly higher than that of conventional delivery techniques. Further, we prepared CD96 knockout NK-92 cells via this platform, and the gene-edited NK-92 cells possessed higher immunity by reversing exhaustion. The high-throughput, high-efficiency, and low-damage performance of our intracellular delivery strategy has great potential for cellular immunotherapy in clinical applications.
Collapse
Affiliation(s)
- Xuan Li
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Yuan Ma
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Yu Xue
- School of Medicine & Holistic Integrative Medicine, University of Chinese Medicine Nanjing, Nanjing 210023, P.R. China
| | - Xuanhe Zhang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Linwen Lv
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qianghua Quan
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Yiqing Chen
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Guoxu Yu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Zhenwei Liang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Xinping Zhang
- Beijing University of Civil Engineering and Architecture, Beijing 102616, P.R. China
| | - Ding Weng
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Lei Chen
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Kui Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xin Han
- School of Medicine & Holistic Integrative Medicine, University of Chinese Medicine Nanjing, Nanjing 210023, P.R. China
| | - Jiadao Wang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
3
|
Hughes HK, Yang H, Lesh TA, Carter CS, Ashwood P. Evidence of innate immune dysfunction in first-episode psychosis patients with accompanying mood disorder. J Neuroinflammation 2022; 19:287. [DOI: 10.1186/s12974-022-02648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
Abstract
Background
Inflammation and increases in inflammatory cytokines are common findings in psychiatric disorders such as schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). Meta-analyses of studies that measured circulating cytokines have provided evidence of innate inflammation across all three disorders, with some overlap of inflammatory cytokines such as IL-6 and TNF-α. However, differences across disorders were also identified, including increased IL-4 in BD that suggest different immune mechanisms may be involved depending on the type of disorder present.
Methods
We sought to identify if the presence or absence of an affective disorder in first-episode psychotic (FEP) patients was associated with variations in cytokine production after stimulation of peripheral blood mononuclear cells (PBMC). 98 participants were recruited and grouped into healthy controls (n = 45) and first-episode psychosis patients (n = 53). Psychosis patients were further grouped by presence (AFF; n = 22) or lack (NON; n = 31) of an affective disorder. We cultured isolated PBMC from all participants for 48 h at 37 °C under four separate conditions; (1) culture media alone for baseline, or the following three stimulatory conditions: (2) 25 ng/mL lipopolysaccharide (LPS), (3) 10 ng/mL phytohemagglutinin (PHA), and (4) 125 ng/ml α-CD3 plus 250 ng/ml α-CD28. Supernatants collected at 48 h were analyzed using multiplex Luminex assay to identify differences in cytokine and chemokine production. Results from these assays were then correlated to patient clinical assessments for positive and negative symptoms common to psychotic disorders.
Results
We found that PBMC from affective FEP patients produced higher concentrations of cytokines associated with both innate and adaptive immunity after stimulation than non-affective FEP patients and healthy controls. More specifically, the AFF PBMC produced increased tumor necrosis fctor (TNF)-α, interleukin (IL)-1β, IL-6, and others associated with innate inflammation. PBMC from AFF also produced increased IL-4, IL-17, interferon (IFN)γ, and other cytokines associated with adaptive immune activation, depending on stimulation. Additionally, inflammatory cytokines that differed at rest and after LPS stimulation correlated with Scale for the Assessment of Negative Symptoms (SANS) scores.
Conclusions
Our findings suggest that immune dysfunction in affective psychosis may differ from that of primary psychotic disorders, and inflammation may be associated with increased negative symptoms. These findings could be helpful in determining clinical diagnosis after first psychotic episode.
Collapse
|
4
|
Liu Y, Li Z, Qi Y, Wen X, Zhang L. Metagenomic Analysis Reveals a Changing Microbiome Associated With the Depth of Invasion of Oral Squamous Cell Carcinoma. Front Microbiol 2022; 13:795777. [PMID: 35222330 PMCID: PMC8863607 DOI: 10.3389/fmicb.2022.795777] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
The relationship between oral squamous cell carcinoma (OSCC) development and the microbiome has attracted increasing attention. The depth of invasion (DOI) is an important indicator of tumor progression, staging and prognosis, and the change in the oral microbiome based on the DOI is unclear. This report describes the use of metagenomic analyses to investigate the relationship between the oral microbiome and the DOI. Forty patients in different DOI categories were recruited; 10 healthy people served as the control group. Swab samples collected from the participants were subjected to metagenomic analyses, and the oral microbial communities and their functions were investigated. The abundances of Fusobacterium nucleatum, Capnocytophaga sputigena, Porphyromonas endodontalis, and Gemella haemolysans were significantly increased in the patients compared with the controls. The abundances of some bacteria exhibited a stage-related trend. The abundances of P. endodontalis, Gemella morbillorum and G. haemolysans increased with increasing DOI. In contrast, the abundances of Prevotella melaninogenica, Haemophilus parainfluenzae and Neisseria flavescens decreased with increasing DOI. Based on receiver operating characteristic (ROC) curve analysis, eight species were found to have predictive value: Rothia mucilaginosa, P. melaninogenica, H. parainfluenzae, and N. flavescens in the healthy control group and P. endodontalis, G. morbillorum, G. haemolysans and Fusobacterium periodonticum in the high DOI group. In the functional analysis, several metabolic pathways were decreased, whereas flagellar assembly and bacterial chemotaxis showed an increasing trend as the disease progressed. Biofilm formation, flagella, lipopolysaccharide (LPS) and other virulence factors exhibited staging-related changes. These pathogenic pathways and factors had a clear correlation with specific pathogens. In particular, when OSCC progressed to the late stage, microbial diversity and functional potential changed greatly.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yanxu Qi
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Shandong, China
| | - Xutao Wen
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
5
|
NAKAJIMA-ADACHI H, TAMAI M, NAKANISHI H, HACHIMURA S. Extracts of <i>Gluconacetobacter hansenii</i> GK-1 induce Foxp3<sup>+</sup>T cells in food-allergic mice by an IL-4-dependent or IL-4-independent mechanism. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2022; 41:137-144. [PMID: 35846833 PMCID: PMC9246422 DOI: 10.12938/bmfh.2021-072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/20/2022] [Indexed: 11/09/2022]
Abstract
The biological activities of acetic acid bacteria (AAB) as Gram-negative bacteria have
attracted our interests, especially in their inhibitory effects on allergic responses. To
clarify the underlying mechanism that improves allergic symptoms by ingestion of the AAB
Gluconacetobacter hansenii, we examined whether different extracts of
heat-killed G. hansenii GK-1 could reduce the interleukin (IL)-4
production of immune cells from food-allergic model of OVA23-3, transgenic mice with
ovalbumin (OVA)-specific T-cell-receptor genes. A hot-water extract fraction (FII) of
G. hansenii GK-1 significantly decreased the in vitro
IL-4 production of spleen cells of OVA23-3 mice compared with those stimulated with OVA
alone. The IL-4 inhibitory effect was also observed for FIV (purified lipopolysaccharide
(LPS) fraction), but the activity was lower than for FII or LPS from Escherichia
coli. Unlike LPS from Escherichia coli, FIV significantly
inhibited the LPS-induced IL-6 production of the spleen cells. The addition of FII or FIV
to a Foxp3+T cell-inducing culture showed that FII significantly promoted the
rate of Foxp3+CD4+T cells of OVA-stimulated mesenteric lymph node
cells from recombination-activating-gene (RAG)-2-deficient food-allergic inflammatory
OVA23-3 (R23-3) mice with suppression of IL-4 production, while FIV induced
Foxp3+T cells from RAG-2-deficient DO11.10 non-inflammatory mice. Structure
analysis showed a lack of O-antigen in FIV, which seemed to lead to the weak biological
activities of FIV observed. The present study suggests that extracts of G.
hansenii GK-1 to inhibit IL-4 production of immune cells and/or promote
regulatory T cell differentiation synergistically play important roles in improving
allergic symptoms safely as well as normal condition.
Collapse
Affiliation(s)
- Haruyo NAKAJIMA-ADACHI
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masato TAMAI
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Haruka NAKANISHI
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi HACHIMURA
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Wang Q, Guo A, Sheng M, Zhou H. The changes of respiratory microbiome between mild and severe asthma patients. Microbiol Immunol 2021; 65:204-213. [PMID: 33629787 DOI: 10.1111/1348-0421.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/01/2022]
Abstract
Due to the increased number of patients suffering from asthma, the mechanism of this disease has been subject to much attention from the public and finding a cure for this disease is urgent. A changed abundance of the microbiome has been proven to play an important role in the genesis and development of asthma. In this study, the abundance and the function of the microbiome were studied. It was found that there were significant changes in the components and the function of the microbiome when asthma changed from mild to severe. This study could help us to better understand the relationship between asthma and the respiratory microbiome.
Collapse
Affiliation(s)
- Qunzhi Wang
- Department of Respiratory and Critical Care Medicine, Jinhua People's Hospital, Zhejiang, China
| | - An Guo
- Department of Respiratory and Critical Care Medicine, Jinhua People's Hospital, Zhejiang, China
| | - Meiling Sheng
- Department of Respiratory and Critical Care Medicine, Jinhua People's Hospital, Zhejiang, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
7
|
Du M, Yang Z, Lu W, Wang B, Wang Q, Chen Z, Chen L, Han S, Cai T, Cai Y. Design and development of spirulina polysaccharide-loaded nanoemulsions with improved the antitumor effects of paclitaxel. J Microencapsul 2020; 37:403-412. [PMID: 32401077 DOI: 10.1080/02652048.2020.1767224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aims: In this study, we prepared spirulina polysaccharides into spirulina polysaccharide-loaded nanoemulsions (SPS-NEs), and determined the antitumor effect of SPS-NEs, when combined with paclitaxel (PTX).Methods: SPS-NEs were prepared by a phase transformation method. The Characterisation and stability of SPS-NEs was measured. The antitumor effect of SPS-NEs combined with PTX was determined by S180 cells or RAW 264.7 macrophages and S180 tumour-bearing mice.Results: SPS-NEs were spherical and stable, the particle size of SPS-NEs was 84.6 ± 3.31 nm, PDI = 0.235 ± 0.02. PTX + SPS-NEs exhibited a much greater toxicity against RAW 264.7 cells than PTX. PTX + SPS-NEs increased the release of NO, IL-6 and TNF-α, and the expression of p-p65 NF-κB, p-I-κB, TLR4. In addition, PTX + SPS-NEs significantly inhibited tumour growth by 72.82% and increased the secretion of serum IL-2, TNF-α and IFN-γ.Conclusions: SPS-NEs can regulate immunity through TLR4/NF-κB signalling pathways, which enhances the anti-tumour effect of PTX.
Collapse
Affiliation(s)
- Manling Du
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhenjiang Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Wenping Lu
- Guang an'men Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingyue Wang
- Guangzhou Jiayuan Pharmaceutical Technology Co., Ltd, Guangzhou, China
| | - Qi Wang
- Guangzhou Jiayuan Pharmaceutical Technology Co., Ltd, Guangzhou, China
| | - Zhen Chen
- Department of Integrative Oncology, Cancer Center, Fudan University, Shanghai, China.,Department of integrative Oncology, Shanghai medical college, Fudan University, Shanghai, China
| | - Lianyu Chen
- Department of Integrative Oncology, Cancer Center, Fudan University, Shanghai, China.,Department of integrative Oncology, Shanghai medical college, Fudan University, Shanghai, China
| | - Shuyan Han
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang, P. R. China
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou, China.,Cancer Institute of Jinan University, Guangzhou, P. R. China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Whitfield C, Williams DM, Kelly SD. Lipopolysaccharide O-antigens-bacterial glycans made to measure. J Biol Chem 2020; 295:10593-10609. [PMID: 32424042 DOI: 10.1074/jbc.rev120.009402] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/17/2020] [Indexed: 01/05/2023] Open
Abstract
Lipopolysaccharides are critical components of bacterial outer membranes. The more conserved lipid A part of the lipopolysaccharide molecule is a major element in the permeability barrier imposed by the outer membrane and offers a pathogen-associated molecular pattern recognized by innate immune systems. In contrast, the long-chain O-antigen polysaccharide (O-PS) shows remarkable structural diversity and fulfills a range of functions, depending on bacterial lifestyles. O-PS production is vital for the success of clinically important Gram-negative pathogens. The biological properties and functions of O-PSs are mostly independent of specific structures, but the size distribution of O-PS chains is particularly important in many contexts. Despite the vast O-PS chemical diversity, most are produced in bacterial cells by two assembly strategies, and the different mechanisms employed in these pathways to regulate chain-length distribution are emerging. Here, we review our current understanding of the mechanisms involved in regulating O-PS chain-length distribution and discuss their impact on microbial cell biology.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Danielle M Williams
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Steven D Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|