1
|
Nadodkar SD, Karande M, Pawar GM, Dhume AV, Sharma A, Salgaonkar BB. Deciphering the salt induced morphogenesis and functional potentials of Hortaea werneckii; a black pigmented halotolerant yeast isolated from solar saltern. Fungal Biol 2024; 128:2113-2126. [PMID: 39384281 DOI: 10.1016/j.funbio.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/11/2024] [Accepted: 08/19/2024] [Indexed: 10/11/2024]
Abstract
An intense black pigmented halotolerant yeast GUBPC1, was obtained from the solar salterns of Nerul, Goa-India. The isolate could tolerate 0 to 20 % NaCl. FE-SEM analysis revealed its polymorphic nature, exhibiting oval cells at higher salt concentrations and filamentous spindle like shapes at lower concentrations. Initially, the cells appear oval, yeast like in shape but gradually after 15 days of incubation, it becomes elongated and undergoes budding, exhibiting various budding patterns, from single polar bud to bipolar buds with annellidic ring, to lateral buds and eventually forming filamentous hyphae. The intracellular black pigment was identified as melanin based on ultraviolet-visible spectroscopy analysis. The molecular identification of the culture showed closest similarity with Hortaea werneckii. Plant polymer-degrading enzymatic activities such as cellulase, laccase, chitinase, xylanase, pectinase, amylase and protease were exhibited by the isolate GUBPC1. To further understand and explore its biotechnological potential, we performed whole-genome sequencing and analysis. The obtained genome size was 26.93 Mb with 686 contigs and a GC content of 53.24 %. We identified 9383 protein-coding genes, and their functional annotation revealed the presence of 435 CAZyme genes and 16 functional genes involved in secondary metabolite synthesis, thus providing a basis for its potential value in various biotechnological applications.
Collapse
Affiliation(s)
- Siddhi Deelip Nadodkar
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
| | - Mrunal Karande
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra, 411007, India.
| | - Gandisha Masso Pawar
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
| | - Aishwarya Vinayak Dhume
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
| | - Avinash Sharma
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, Maharashtra, 411007, India; School of Agriculture, Graphic Era Hill University, Dehradun, 248002, India.
| | - Bhakti Balkrishna Salgaonkar
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
| |
Collapse
|
2
|
Roik A, Reverter M, Pogoreutz C. A roadmap to understanding diversity and function of coral reef-associated fungi. FEMS Microbiol Rev 2022; 46:fuac028. [PMID: 35746877 PMCID: PMC9629503 DOI: 10.1093/femsre/fuac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Tropical coral reefs are hotspots of marine productivity, owing to the association of reef-building corals with endosymbiotic algae and metabolically diverse bacterial communities. However, the functional importance of fungi, well-known for their contribution to shaping terrestrial ecosystems and global nutrient cycles, remains underexplored on coral reefs. We here conceptualize how fungal functional traits may have facilitated the spread, diversification, and ecological adaptation of marine fungi on coral reefs. We propose that functions of reef-associated fungi may be diverse and go beyond their hitherto described roles of pathogens and bioeroders, including but not limited to reef-scale biogeochemical cycles and the structuring of coral-associated and environmental microbiomes via chemical mediation. Recent technological and conceptual advances will allow the elucidation of the physiological, ecological, and chemical contributions of understudied marine fungi to coral holobiont and reef ecosystem functioning and health and may help provide an outlook for reef management actions.
Collapse
Affiliation(s)
- Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Claudia Pogoreutz
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Amelia TSM, Suaberon FAC, Vad J, Fahmi ADM, Saludes JP, Bhubalan K. Recent Advances of Marine Sponge-Associated Microorganisms as a Source of Commercially Viable Natural Products. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:492-512. [PMID: 35567600 DOI: 10.1007/s10126-022-10130-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Many industrially significant compounds have been derived from natural products in the environment. Research efforts so far have contributed to the discovery of beneficial natural products that have improved the quality of life on Earth. As one of the sources of natural products, marine sponges have been progressively recognised as microbial hotspots with reports of the sponges harbouring diverse microbial assemblages, genetic material, and metabolites with multiple industrial applications. Therefore, this paper aims at reviewing the recent literature (primarily published between 2016 and 2022) on the types and functions of natural products synthesised by sponge-associated microorganisms, thereby helping to bridge the gap between research and industrial applications. The metabolites that have been derived from sponge-associated microorganisms, mostly bacteria, fungi, and algae, have shown application prospects especially in medicine, cosmeceutical, environmental protection, and manufacturing industries. Sponge bacteria-derived natural products with medical properties harboured anticancer, antibacterial, antifungal, and antiviral functions. Efforts in re-identifying the origin of known and future sponge-sourced natural products would further clarify the roles and significance of microbes within marine sponges.
Collapse
Affiliation(s)
- Tan Suet May Amelia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ferr Angelus C Suaberon
- Center for Natural Drug Discovery & Development (CND3), University of San Agustin, 5000, Iloilo City, Philippines
| | - Johanne Vad
- Changing Oceans Research Group, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Afiq Durrani Mohd Fahmi
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Eco-Innovation Research Interest Group, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Jonel P Saludes
- Center for Natural Drug Discovery & Development (CND3), University of San Agustin, 5000, Iloilo City, Philippines
- Department of Chemistry, University of San Agustin, 5000, Iloilo City, Philippines
- Department of Science and Technology, Balik Scientist Program, Philippine Council for Health Research & Development (PCHRD), Bicutan, 1631, Taguig, Philippines
| | - Kesaven Bhubalan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
- Eco-Innovation Research Interest Group, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
4
|
Hagestad OC, Hou L, Andersen JH, Hansen EH, Altermark B, Li C, Kuhnert E, Cox RJ, Crous PW, Spatafora JW, Lail K, Amirebrahimi M, Lipzen A, Pangilinan J, Andreopoulos W, Hayes RD, Ng V, Grigoriev IV, Jackson SA, Sutton TDS, Dobson ADW, Rämä T. Genomic characterization of three marine fungi, including Emericellopsis atlantica sp. nov. with signatures of a generalist lifestyle and marine biomass degradation. IMA Fungus 2021; 12:21. [PMID: 34372938 PMCID: PMC8351168 DOI: 10.1186/s43008-021-00072-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/25/2021] [Indexed: 11/10/2022] Open
Abstract
Marine fungi remain poorly covered in global genome sequencing campaigns; the 1000 fungal genomes (1KFG) project attempts to shed light on the diversity, ecology and potential industrial use of overlooked and poorly resolved fungal taxa. This study characterizes the genomes of three marine fungi: Emericellopsis sp. TS7, wood-associated Amylocarpus encephaloides and algae-associated Calycina marina. These species were genome sequenced to study their genomic features, biosynthetic potential and phylogenetic placement using multilocus data. Amylocarpus encephaloides and C. marina were placed in the Helotiaceae and Pezizellaceae (Helotiales), respectively, based on a 15-gene phylogenetic analysis. These two genomes had fewer biosynthetic gene clusters (BGCs) and carbohydrate active enzymes (CAZymes) than Emericellopsis sp. TS7 isolate. Emericellopsis sp. TS7 (Hypocreales, Ascomycota) was isolated from the sponge Stelletta normani. A six-gene phylogenetic analysis placed the isolate in the marine Emericellopsis clade and morphological examination confirmed that the isolate represents a new species, which is described here as E. atlantica. Analysis of its CAZyme repertoire and a culturing experiment on three marine and one terrestrial substrates indicated that E. atlantica is a psychrotrophic generalist fungus that is able to degrade several types of marine biomass. FungiSMASH analysis revealed the presence of 35 BGCs including, eight non-ribosomal peptide synthases (NRPSs), six NRPS-like, six polyketide synthases, nine terpenes and six hybrid, mixed or other clusters. Of these BGCs, only five were homologous with characterized BGCs. The presence of unknown BGCs sets and large CAZyme repertoire set stage for further investigations of E. atlantica. The Pezizellaceae genome and the genome of the monotypic Amylocarpus genus represent the first published genomes of filamentous fungi that are restricted in their occurrence to the marine habitat and form thus a valuable resource for the community that can be used in studying ecological adaptions of fungi using comparative genomics.
Collapse
Affiliation(s)
- Ole Christian Hagestad
- Marbio, The Norwegian College of Fishery Science, Department at Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Lingwei Hou
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, Netherlands
| | - Jeanette H Andersen
- Marbio, The Norwegian College of Fishery Science, Department at Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Espen H Hansen
- Marbio, The Norwegian College of Fishery Science, Department at Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Bjørn Altermark
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Chun Li
- Marbio, The Norwegian College of Fishery Science, Department at Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Eric Kuhnert
- Institute of Organic Chemistry and BMWZ, Leibniz Universität Hannover, Hanover, Germany
| | - Russell J Cox
- Institute of Organic Chemistry and BMWZ, Leibniz Universität Hannover, Hanover, Germany
| | - Pedro W Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, Netherlands
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, USA
| | - Kathleen Lail
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mojgan Amirebrahimi
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - William Andreopoulos
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Richard D Hayes
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Stephen A Jackson
- School of Microbiology, University College Cork, Cork, Ireland
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Thomas D S Sutton
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Teppo Rämä
- Marbio, The Norwegian College of Fishery Science, Department at Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
Lyu L, Wang Q, Wang G. Cultivation and diversity analysis of novel marine thraustochytrids. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:263-275. [PMID: 37073337 PMCID: PMC10077191 DOI: 10.1007/s42995-020-00069-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/23/2020] [Indexed: 05/03/2023]
Abstract
Thraustochytrids are a group of unicellular marine heterotrophic protists, and have long been known for their biotechnological potentials in producing squalene, polyunsaturated fatty acids (PUFAs) and other bioactive products. There are less than a hundred known strains from diverse marine habitats. Therefore, the discovery of new strains from natural environments is still one of the major limitations for fully exploring this interesting group of marine protists. At present, numerous attempts have been made to study thraustochytrids, mainly focusing on isolating new strains, analyzing the diversity in specific marine habitats, and increasing the yield of bioactive substances. There is a lack of a systematic study of the culturable diversity, and cultivation strategies. This paper reviews the distribution and diversity of culturable thraustochytrids from a range of marine environments, and describes in detail the most commonly used isolation methods and the control of culture parameters. Furthermore, the perspective approaches of isolation and cultivation for the discovery of new strains are discussed. Finally, the future directions of novel marine thraustochytrid research are proposed. The ultimate goal is to promote the awareness of biotechnological potentials of culturable thraustochytrid strains in industrial and biomedical applications.
Collapse
Affiliation(s)
- Lu Lyu
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Qiuzhen Wang
- Ocean College of Hebei Agricultural University, Qinhuangdao, 066000 China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
| |
Collapse
|
6
|
Czachura P, Owczarek-Kościelniak M, Piątek M. Salinomyces polonicus: A moderately halophilic kin of the most extremely halotolerant fungus Hortaea werneckii. Fungal Biol 2021; 125:459-468. [PMID: 34024593 DOI: 10.1016/j.funbio.2021.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/13/2021] [Indexed: 01/04/2023]
Abstract
A clade where the most halotolerant fungus in the world - Hortaea werneckii, belongs (hereafter referred to as Hortaea werneckii lineage) includes five species: Hortaea werneckii, H. thailandica, Stenella araguata, Eupenidiella venezuelensis, and Magnuscella marina, of which the first species attracts increasing attention of mycologists. The species diversity and phylogenetic relationships within this lineage are weakly known. In this study two moderately halophilic black yeast strains were isolated from brine of graduation tower in Poland. Molecular phylogenetic analyses based on the rDNA ITS1-5.8S-ITS2 (=ITS), rDNA 28S D1-D2 (=LSU), and RNA polymerase II (rpb2) sequences showed that the two strains belong to Hortaea werneckii lineage but cannot be assigned to any described taxa. Accordingly, a new genus and species, Salinomyces and Salinomyces polonicus, are described for this fungus. Furthermore, molecular phylogenetic analyses have revealed that Hortaea thailandica is more closely related to S. polonicus than to H. werneckii. A new combination Salinomyces thailandicus is proposed for this fungus.
Collapse
Affiliation(s)
- Paweł Czachura
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512, Kraków, Poland.
| | | | - Marcin Piątek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512, Kraków, Poland.
| |
Collapse
|