1
|
Ci Z, Wang H, Luo J, Wei C, Chen J, Wang D, Zhou Y. Application of Nanomaterials Targeting Immune Cells in the Treatment of Chronic Inflammation. Int J Nanomedicine 2024; 19:13925-13946. [PMID: 39735324 PMCID: PMC11682674 DOI: 10.2147/ijn.s497590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/10/2024] [Indexed: 12/31/2024] Open
Abstract
Chronic inflammation is a common characteristic of all kinds of diseases, including autoimmune diseases, metabolic diseases, and tumors. It is distinguished by the presence of low concentrations of inflammatory factors stimulating the body for an extended period, resulting in a persistent state of infection. This condition is manifested by the aggregation and infiltration of mononuclear cells, lymphocytes, and other immune cells, leading to tissue hyperplasia and lesions. Although various anti-inflammatory medications, including glucocorticoids and non-steroidal anti-inflammatory drugs (NSAIDs), have shown strong therapeutic effects, they lack specificity and targeting ability, and require high dosages, which can lead to severe adverse reactions. Nanoparticle drug delivery mechanisms possess the capacity to minimize the effect on healthy cells or tissues due to their targeting capabilities and sustained drug release properties. However, most nanosystems can only target the inflammatory sites rather than specific types of immune cells, leaving room for further improvement in the therapeutic effects of nanomaterials. This article reviews the current research progress on the role of diverse immune cells in inflammation, focusing on the functions of neutrophils and macrophages during inflammation. It provides an overview of the domestic and international applications of nanomaterials in targeted therapy for inflammation, aiming to establish a conceptual foundation for the utilization of nanomaterials targeting immune cells in the treatment of chronic inflammation and offer new perspectives for the avoidance and management of inflammation.
Collapse
Affiliation(s)
- Zhen Ci
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Hanchi Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiaxin Luo
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Chuqiao Wei
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jingxia Chen
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Dongyang Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Biology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
2
|
Arcambal A, Septembre-Malaterre A, Pesnel S, Morel AL, Gasque P, Begue M, Slama Y. The Potential of Human Pulmonary Mesenchymal Stem Cells as Vectors for Radiosensitizing Metallic Nanoparticles: An In Vitro Study. Cancers (Basel) 2024; 16:3239. [PMID: 39335210 PMCID: PMC11430180 DOI: 10.3390/cancers16183239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Metallic nanoparticles (NPs) exhibit interesting radiosensitizing effects, and finding a way to accurately deliver them appears to be crucial. Due to their tumor tropism, mesenchymal stem cells (MSCs) represent a strategic approach. Therefore, we aimed to evaluate the impact of core-shell Fe3O4@Au NPs on the functionality of human pulmonary MSCs (HPMSCs). METHODS/RESULTS The results showed that 100 µg/mL Fe3O4@Au NPs, accumulated in HPMSCs (revealed by Prussian blue staining), did not alter cell viability as assessed by cell counting, MTT, and LDH assays. However, caspase 9 and Bcl2 gene expression, evaluated by RT-qPCR, was regulated 72 h after exposure to the NPs. Moreover, the NPs also decreased proinflammatory cytokine/chemokine secretions, except for CXCL8 (ELISA). These modulations were associated with the downregulation of AMPK gene expression at 24 h. In contrast, the NPs did not modulate VEGF, PI3K, or PDGF gene expression. Nevertheless, a decrease in VEGF secretion was observed after 24 h of exposure to the NPs. Interestingly, the Fe3O4@Au NPs did not modulate Nrf2 gene expression, but they did regulate the expression of the genes encoding Nox4 and HMOX-1. Additionally, the NPs increased ROS production, suggesting a redox imbalance. CONCLUSIONS Finally, the Fe3O4@Au NPs did not affect the HPMSCs' viability or proangiogenic/tumorigenic markers. These findings are encouraging for investigating the effects of Fe3O4@Au NPs delivered by HPMSCs to tumor sites in combination with radiation.
Collapse
Affiliation(s)
- Angélique Arcambal
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Sainte-Clotilde Clinic, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
| | - Axelle Septembre-Malaterre
- Unité de Recherche Etudes Pharmaco-Immunologiques (EPI), University of La Réunion, CHU of La Réunion, Felix Guyon Site, Allée des Topazes, SC11021, 97400 Saint-Denis, Reunion Island, France
| | - Sabrina Pesnel
- Torskal Nanosciences, 2 Rue Maxime Rivière, 97490 Sainte-Clotilde, Reunion Island, France
| | - Anne-Laure Morel
- Torskal Nanosciences, 2 Rue Maxime Rivière, 97490 Sainte-Clotilde, Reunion Island, France
| | - Philippe Gasque
- Unité de Recherche Etudes Pharmaco-Immunologiques (EPI), University of La Réunion, CHU of La Réunion, Felix Guyon Site, Allée des Topazes, SC11021, 97400 Saint-Denis, Reunion Island, France
| | - Mickael Begue
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Sainte-Clotilde Clinic, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
- Department of Radiotherapy, Sainte-Clotilde Clinic, Clinifutur Group, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
| | - Youssef Slama
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Sainte-Clotilde Clinic, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
- Unité de Recherche Etudes Pharmaco-Immunologiques (EPI), University of La Réunion, CHU of La Réunion, Felix Guyon Site, Allée des Topazes, SC11021, 97400 Saint-Denis, Reunion Island, France
- Department of Radiotherapy, Sainte-Clotilde Clinic, Clinifutur Group, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
| |
Collapse
|
3
|
Ma Q, Steiger S. Neutrophils and extracellular traps in crystal-associated diseases. Trends Mol Med 2024; 30:809-823. [PMID: 38853086 DOI: 10.1016/j.molmed.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
Crystalline material can cause a multitude of acute and chronic inflammatory diseases, such as gouty arthritis, silicosis, kidney disease, and atherosclerosis. Crystals of various types are thought to cause similar inflammatory responses, including the release of proinflammatory mediators and formation of neutrophil extracellular traps (NETs), processes that further promote necroinflammation and tissue damage. It has become apparent that the intensity of inflammation and the related mechanisms of NET formation and neutrophil death in crystal-associated diseases can vary depending on the crystal type, amount, and site of deposition. This review details new mechanistic insights into crystal biology, highlights the differential effects of various crystals on neutrophils and extracellular trap (ET) formation, and discusses treatment strategies and potential future approaches for crystal-associated disorders.
Collapse
Affiliation(s)
- Qiuyue Ma
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
| | - Stefanie Steiger
- Renal Division, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
4
|
Li Y, Moein Moghimi S, Simberg D. Complement-dependent uptake of nanoparticles by blood phagocytes: brief overview and perspective. Curr Opin Biotechnol 2024; 85:103044. [PMID: 38091875 PMCID: PMC11214757 DOI: 10.1016/j.copbio.2023.103044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 02/09/2024]
Abstract
Immune recognition and uptake of nanoparticles remain the hot topic in nanomedicine research. Complement is the central player in the immune recognition of engineered nanoparticles. Here, we summarize the accumulated knowledge on the role of complement in the interactions of nanomaterials with blood phagocytes. We describe the interplay between surface properties, complement opsonization, and immune uptake, primarily of iron oxide nanoparticles. We discuss the rigor of the published research and further identify the following knowledge gaps: 1) the role of complement in the variability of uptake of nanomaterials in healthy and diseased subjects, and 2) modulation of complement interactions to improve the performance of nanomaterials. Addressing these gaps is critical to improving translational chances of nanomaterials for drug delivery and imaging applications.
Collapse
Affiliation(s)
- Yue Li
- Translational Bio-Nanosciences Laboratory, USA; Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Seyed Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, USA; Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
5
|
Garanina AS, Vishnevskiy DA, Chernysheva AA, Valikhov MP, Malinovskaya JA, Lazareva PA, Semkina AS, Abakumov MA, Naumenko VA. Neutrophil as a Carrier for Cancer Nanotherapeutics: A Comparative Study of Liposome, PLGA, and Magnetic Nanoparticles Delivery to Tumors. Pharmaceuticals (Basel) 2023; 16:1564. [PMID: 38004431 PMCID: PMC10674452 DOI: 10.3390/ph16111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Insufficient drug accumulation in tumors is still a major concern for using cancer nanotherapeutics. Here, the neutrophil-based delivery of three nanoparticle types-liposomes, PLGA, and magnetite nanoparticles-was assessed both in vitro and in vivo. Confocal microscopy and a flow cytometry analysis demonstrated that all the studied nanoparticles interacted with neutrophils from the peripheral blood of mice with 4T1 mammary adenocarcinoma without a significant impact on neutrophil viability or activation state. Intravital microscopy of the tumor microenvironment showed that the neutrophils did not engulf the liposomes after intravenous administration, but facilitated nanoparticle extravasation in tumors through micro- and macroleakages. PLGA accumulated along the vessel walls in the form of local clusters. Later, PLGA nanoparticle-loaded neutrophils were found to cross the vascular barrier and migrate towards the tumor core. The magnetite nanoparticles extravasated in tumors both via spontaneous macroleakages and on neutrophils. Overall, the specific type of nanoparticles largely determined their behavior in blood vessels and their neutrophil-mediated delivery to the tumor. Since neutrophils are the first to migrate to the site of inflammation, they can increase nanodrug delivery effectiveness for nanomedicine application.
Collapse
Affiliation(s)
- Anastasiia S. Garanina
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology «MISIS», 119049 Moscow, Russia;
| | - Daniil A. Vishnevskiy
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.V.); (M.P.V.); (P.A.L.); (A.S.S.)
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.A.C.); (V.A.N.)
| | - Anastasia A. Chernysheva
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.A.C.); (V.A.N.)
| | - Marat P. Valikhov
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.V.); (M.P.V.); (P.A.L.); (A.S.S.)
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.A.C.); (V.A.N.)
| | | | - Polina A. Lazareva
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.V.); (M.P.V.); (P.A.L.); (A.S.S.)
| | - Alevtina S. Semkina
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.V.); (M.P.V.); (P.A.L.); (A.S.S.)
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.A.C.); (V.A.N.)
| | - Maxim A. Abakumov
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology «MISIS», 119049 Moscow, Russia;
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.V.); (M.P.V.); (P.A.L.); (A.S.S.)
| | - Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.A.C.); (V.A.N.)
| |
Collapse
|
6
|
Li Y, Srinath A, Alcazar-Felix RJ, Hage S, Bindal A, Lightle R, Shenkar R, Shi C, Girard R, Awad IA. Inflammatory Mechanisms in a Neurovascular Disease: Cerebral Cavernous Malformation. Brain Sci 2023; 13:1336. [PMID: 37759937 PMCID: PMC10526329 DOI: 10.3390/brainsci13091336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Cerebral cavernous malformation (CCM) is a common cerebrovascular malformation causing intracranial hemorrhage, seizures, and focal neurologic deficits. A unique CCM lesional inflammatory microenvironment has been shown to influence the clinical course of the disease. This review addresses the inflammatory cell infiltrate in the CCM lesion and the role of a defined antigen-driven immune response in pathogenicity. We summarize immune mechanisms associated with the loss of the CCM gene and disease progression, including the potential role of immunothrombosis. We also review evidence of circulating inflammatory biomarkers associated with CCM disease and its clinical activity. We articulate future directions for this research, including the role of individual cell type contributions to the immune response in CCM, single cell transcriptomics of inflammatory cells, biomarker development, and therapeutic implications. The concepts are applicable for developing diagnostic and treatment strategies for CCM and for studying other neurovascular diseases.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (Y.L.); (C.S.)
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Roberto J. Alcazar-Felix
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Stephanie Hage
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Akash Bindal
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Changbin Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (Y.L.); (C.S.)
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Issam A. Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
- Department of Neurological Surgery, University of Chicago Medicine, 5841 S Maryland, MC3026/Neurosurgery J341, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Han Z, Chen L, Peng H, Zheng H, Lin Y, Peng F, Fan Y, Xie X, Yang S, Wang Z, Yuan L, Wei X, Chen H. The role of thyroid hormone in the renal immune microenvironment. Int Immunopharmacol 2023; 119:110172. [PMID: 37086678 DOI: 10.1016/j.intimp.2023.110172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
Thyroid hormones are essential for proper kidney growth and development. The kidney is not only the organ of thyroid hormone metabolism but also the target organ of thyroid hormone. Kidney disease is a common type of kidney damage, mainly including different types of acute kidney injury, chronic kidney disease, diabetic nephropathy, lupus nephritis, and renal cell carcinoma. The kidney is often damaged by an immune response directed against its antigens or a systemic immune response. A variety of immune cells in the innate and adaptive immune systems, including neutrophils, macrophages, dendritic cells, T lymphocytes, and B lymphocytes, is essential for maintaining immune homeostasis and preventing autoimmune kidney disease. Recent studies have found that thyroid hormone plays an indispensable role in the immune microenvironment of various kidney diseases. Thyroid hormones regulate the activity of neutrophils, and dendritic cells express triiodothyronine receptors. Compared to hypothyroidism, hyperthyroidism has a greater effect on neutrophils. Furthermore, in adaptive immune systems, thyroid hormone may activate T lymphocytes through several underlying mechanisms, such as mediating NF-κB, protein kinase C signalling pathways, and β-adrenergic receptors, leading to increased T lymphocyte activation. The present review discusses the effects of thyroid hormone metabolism regulation in the immune microenvironment on the function of various immune cells, especially neutrophils, macrophages, dendritic cells, T lymphocytes, and B lymphocytes. Although there are not enough data at this stage to conclude the clinical relevance of these findings, thyroid hormone metabolism may influence autoimmune kidney disease by regulating the renal immune microenvironment.
Collapse
Affiliation(s)
- Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyao Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongying Zheng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunhe Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuli Xie
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Simin Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Lianyungang Clinical Medical College of Nanjing Medical University, Lianyungang, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiuyan Wei
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | | |
Collapse
|
8
|
Russell P, Esser L, Hagemeyer CE, Voelcker NH. The potential impact of nanomedicine on COVID-19-induced thrombosis. NATURE NANOTECHNOLOGY 2023; 18:11-22. [PMID: 36536042 DOI: 10.1038/s41565-022-01270-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Extensive reports of pulmonary embolisms, ischaemic stroke and myocardial infarctions caused by coronavirus disease 2019 (COVID-19), as well as a significantly increased long-term risk of cardiovascular diseases in COVID-19 survivors, have highlighted severe deficiencies in our understanding of thromboinflammation and the need for new therapeutic options. Due to the complexity of the immunothrombosis pathophysiology, the efficacy of treatment with conventional anti-thrombotic medication is questioned. Thrombolytics do appear efficacious, but are hindered by severe bleeding risks, limiting their use. Nanomedicine can have profound impact in this context, protecting delicate (bio)pharmaceuticals from degradation en route and enabling delivery in a targeted and on demand manner. We provide an overview of the most promising nanocarrier systems and design strategies that may be adapted to develop nanomedicine for COVID-19-induced thromboinflammation, including dual-therapeutic approaches with antiviral and immunosuppressants. Resultant targeted and side-effect-free treatment may aid greatly in the fight against the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Peije Russell
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing, Clayton, Victoria, Australia
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lars Esser
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing, Clayton, Victoria, Australia
| | - Christoph E Hagemeyer
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of Australian National Fabrication Facility, Clayton, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
9
|
Mobeen H, Safdar M, Fatima A, Afzal S, Zaman H, Mehdi Z. Emerging applications of nanotechnology in context to immunology: A comprehensive review. Front Bioeng Biotechnol 2022; 10:1024871. [PMID: 36619389 PMCID: PMC9815620 DOI: 10.3389/fbioe.2022.1024871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous benefits of nanotechnology are available in many scientific domains. In this sense, nanoparticles serve as the fundamental foundation of nanotechnology. Recent developments in nanotechnology have demonstrated that nanoparticles have enormous promise for use in almost every field of life sciences. Nanoscience and nanotechnology use the distinctive characteristics of tiny nanoparticles (NPs) for various purposes in electronics, fabrics, cosmetics, biopharmaceutical industries, and medicines. The exclusive physical, chemical, and biological characteristics of nanoparticles prompt different immune responses in the body. Nanoparticles are believed to have strong potential for the development of advanced adjuvants, cytokines, vaccines, drugs, immunotherapies, and theranostic applications for the treatment of targeted bacterial, fungal, viral, and allergic diseases and removal of the tumor with minimal toxicity as compared to macro and microstructures. This review highlights the medical and non-medical applications with a detailed discussion on enhanced and targeted natural and acquired immunity against pathogens provoked by nanoparticles. The immunological aspects of the nanotechnology field are beyond the scope of this Review. However, we provide updated data that will explore novel theragnostic immunological applications of nanotechnology for better and immediate treatment.
Collapse
Affiliation(s)
- Hifsa Mobeen
- Department of Allied Health Sciences, Superior University, Lahore, Pakistan
| | - Muhammad Safdar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Asma Fatima
- Pakistan Institute of Quality Control, Superior University, Lahore, Pakistan
| | - Samia Afzal
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hassan Zaman
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Zuhair Mehdi
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
10
|
Snoderly HT, Freshwater KA, Martinez de la Torre C, Panchal DM, Vito JN, Bennewitz MF. PEGylation of Metal Oxide Nanoparticles Modulates Neutrophil Extracellular Trap Formation. BIOSENSORS 2022; 12:123. [PMID: 35200382 PMCID: PMC8869785 DOI: 10.3390/bios12020123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/04/2022] [Accepted: 02/13/2022] [Indexed: 06/01/2023]
Abstract
Novel metal oxide nanoparticle (NP) contrast agents may offer safety and functionality advantages over conventional gadolinium-based contrast agents (GBCAs) for cancer diagnosis by magnetic resonance imaging. However, little is known about the behavior of metal oxide NPs, or of their effect, upon coming into contact with the innate immune system. As neutrophils are the body's first line of defense, we sought to understand how manganese oxide and iron oxide NPs impact leukocyte functionality. Specifically, we evaluated whether contrast agents caused neutrophils to release web-like fibers of DNA known as neutrophil extracellular traps (NETs), which are known to enhance metastasis and thrombosis in cancer patients. Murine neutrophils were treated with GBCA, bare manganese oxide or iron oxide NPs, or poly(lactic-co-glycolic acid) (PLGA)-coated metal oxide NPs with different incorporated levels of poly(ethylene glycol) (PEG). Manganese oxide NPs elicited the highest NETosis rates and had enhanced neutrophil uptake properties compared to iron oxide NPs. Interestingly, NPs with low levels of PEGylation produced more NETs than those with higher PEGylation. Despite generating a low rate of NETosis, GBCA altered neutrophil cytokine expression more than NP treatments. This study is the first to investigate whether manganese oxide NPs and GBCAs modulate NETosis and reveals that contrast agents may have unintended off-target effects which warrant further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | - Margaret F. Bennewitz
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA; (H.T.S.); (K.A.F.); (C.M.d.l.T.); (D.M.P.); (J.N.V.)
| |
Collapse
|
11
|
Qin L, Duan Z, Cheng H, Wang Y, Zhang H, Zhu Z, Wang L. Size-dependent impact of polystyrene microplastics on the toxicity of cadmium through altering neutrophil expression and metabolic regulation in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118169. [PMID: 34536643 DOI: 10.1016/j.envpol.2021.118169] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Insufficient evidence exists regarding the visible physiological toxic endpoints of MPs exposures on zebrafish larvae due to their small sizes. Herein, the impacts of micro-polystyrene particles (μ-PS) and 100 nm polystyrene particles (n-PS) on the toxicity of cadmium (Cd) through altering neutrophil expressions were identified and quantified in the transgenic zebrafish (Danio rerio) larvae Tg(lyz:DsRed2), and the effects were size-dependent. When exposed together with μ-PS, the amount of neutrophils in Cd treated zebrafish larvae decreased by 25.56% through reducing Cd content in the larvae. By contrast, although n-PS exposure caused lower Cd content in the larvae, the expression of neutrophils under their combined exposure remained high. The mechanism of immune toxicity was analyzed based on the results of metabonomics. n-PS induced high oxidative stress in the larvae, which promoted taurine metabolism and unsaturated fatty biosynthesis in n-PS + Cd treatment. This observation was accordance with the significant inhibition of the activities of superoxide dismutase and catalase enzymes detected in their combined treatment. Moreover, n-PS promoted the metabolic pathways of catabolic processes, amino acid metabolism, purine metabolism, and steroid hormone biosynthesis in Cd treated zebrafish larvae. Nanoplasctis widely coexist with other pollutants in the environment at relatively low concentrations. We conclude that more bio-markers of immune impact should be explored to identify their toxicological mechanisms and mitigate the effects on the environment.
Collapse
Affiliation(s)
- Li Qin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Zhenghua Duan
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin University of Technology, Tianjin, 300384, China.
| | - Haodong Cheng
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin University of Technology, Tianjin, 300384, China
| | - Yudi Wang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin University of Technology, Tianjin, 300384, China
| | - Haihong Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhe Zhu
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin University of Technology, Tianjin, 300384, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300071, China
| |
Collapse
|
12
|
Zhang Y, Guoqiang L, Sun M, Lu X. Targeting and exploitation of tumor-associated neutrophils to enhance immunotherapy and drug delivery for cancer treatment. Cancer Biol Med 2021; 17:32-43. [PMID: 32296575 PMCID: PMC7142839 DOI: 10.20892/j.issn.2095-3941.2019.0372] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022] Open
Abstract
Neutrophils, the most abundant leukocytes in human blood, are essential fighter immune cells against microbial infection. Based on the finding that neutrophils can either restrict or promote cancer progression, tumor-associated neutrophils (TAN) are classified into anti-tumor N1 and pro-tumor N2 subsets. One of the major mechanisms underlying the tumor-promoting function of N2-TANs is suppression of adaptive immune cells, in particular, cytotoxic T lymphocytes. Currently, no established methodologies are available that can unequivocally distinguish immunosuppressive TANs and granulocytic/polymorphonuclear myeloid-derived suppressor cells (G/PMN-MDSC). In view of the critical role of PMN-MDSCs in immune evasion and resistance to cancer immunotherapy, as established from data obtained with diverse cancer models, therapeutic strategies targeting these cells have been actively developed to enhance the efficacy of immunotherapy. Here, we have reviewed the available literature on strategies targeting PMN-MDSCs and summarized the findings into four categories: (1) depletion of existing PMN-MDSCs, (2) blockade of the development of PMN-MDSCs, (3) blockade of PMN-MDSC recruitment, (4) inhibition of immunosuppressive function. Owing to their high mobility to inflamed organs and ability to trespass the blood-brain barrier, neutrophils are outstanding candidate carriers in nanoparticle-based therapies. Another attractive application of neutrophils in cancer therapy is the use of neutrophil membrane-derived nanovesicles as a surrogate of extracellular vesicles for more efficient and scalable drug delivery. In the second part of the review, we have highlighted recent advances in the field of neutrophil-based cancer drug delivery. Overall, we believe that neutrophil-based therapeutics are a rapidly growing area of cancer therapy with significant potential benefits.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA.,Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Liu Guoqiang
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA.,Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Miaomiao Sun
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA.,Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA.,Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
Talamini L, Matsuura E, De Cola L, Muller S. Immunologically Inert Nanostructures as Selective Therapeutic Tools in Inflammatory Diseases. Cells 2021; 10:cells10030707. [PMID: 33806746 PMCID: PMC8004653 DOI: 10.3390/cells10030707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
The current therapies based on immunosuppressant or new biologic drugs often show some limitations in term of efficacy and applicability, mainly because of their inadequate targeting and of unwanted adverse reactions they generate. To overcome these inherent problems, in the last decades, innovative nanocarriers have been developed to encapsulate active molecules and offer novel promising strategies to efficiently modulate the immune system. This review provides an overview of how it is possible, exploiting the favorable features of nanocarriers, especially with regard to their immunogenicity, to improve the bioavailability of novel drugs that selectively target immune cells in the context of autoimmune disorders and inflammatory diseases. A focus is made on nanoparticles that selectively target neutrophils in inflammatory pathologies.
Collapse
Affiliation(s)
- Laura Talamini
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France/Strasbourg Drug Discovery and Development Institute (IMS), Institut de Science et D'Ingénierie Supramoléculaire, 67000 Strasbourg, France
| | - Eiji Matsuura
- Neutron Therapy Research Center, Collaborative Research Center, Department of Cell Chemistry, Okayama University, Okayama 700-8558, Japan
| | - Luisa De Cola
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Department of Pharmaceutical Sciences (DISFARM), University of Milano, 20122 Milan, Italy
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France/Strasbourg Drug Discovery and Development Institute (IMS), Institut de Science et D'Ingénierie Supramoléculaire, 67000 Strasbourg, France
- Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, 67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France
| |
Collapse
|
14
|
Kyriakides TR, Raj A, Tseng TH, Xiao H, Nguyen R, Mohammed FS, Halder S, Xu M, Wu MJ, Bao S, Sheu WC. Biocompatibility of nanomaterials and their immunological properties. Biomed Mater 2021; 16:10.1088/1748-605X/abe5fa. [PMID: 33578402 PMCID: PMC8357854 DOI: 10.1088/1748-605x/abe5fa] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
Nanomaterials (NMs) have revolutionized multiple aspects of medicine by enabling novel sensing, diagnostic, and therapeutic approaches. Advancements in processing and fabrication have also allowed significant expansion in the applications of the major classes of NMs based on polymer, metal/metal oxide, carbon, liposome, or multi-scale macro-nano bulk materials. Concomitantly, concerns regarding the nanotoxicity and overall biocompatibility of NMs have been raised. These involve putative negative effects on both patients and those subjected to occupational exposure during manufacturing. In this review, we describe the current state of testing of NMs including those that are in clinical use, in clinical trials, or under development. We also discuss the cellular and molecular interactions that dictate their toxicity and biocompatibility. Specifically, we focus on the reciprocal interactions between NMs and host proteins, lipids, and sugars and how these induce responses in immune and other cell types leading to topical and/or systemic effects.
Collapse
Affiliation(s)
- Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
- Department of Pathology, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Arindam Raj
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06405, United States of America
| | - Tiffany H Tseng
- Department of Pathology, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Hugh Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Ryan Nguyen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Farrah S Mohammed
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Saiti Halder
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Mengqing Xu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Michelle J Wu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Shuozhen Bao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Wendy C Sheu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| |
Collapse
|
15
|
Ramos-Martínez E, Hernández-González L, Ramos-Martínez I, Pérez-Campos Mayoral L, López-Cortés GI, Pérez-Campos E, Mayoral Andrade G, Hernández-Huerta MT, José MV. Multiple Origins of Extracellular DNA Traps. Front Immunol 2021; 12:621311. [PMID: 33717121 PMCID: PMC7943724 DOI: 10.3389/fimmu.2021.621311] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/06/2021] [Indexed: 01/21/2023] Open
Abstract
Extracellular DNA traps (ETs) are evolutionarily conserved antimicrobial mechanisms present in protozoa, plants, and animals. In this review, we compare their similarities in species of different taxa, and put forward the hypothesis that ETs have multiple origins. Our results are consistent with a process of evolutionary convergence in multicellular organisms through the application of a congruency test. Furthermore, we discuss why multicellularity is related to the presence of a mechanism initiating the formation of ETs.
Collapse
Affiliation(s)
- Edgar Ramos-Martínez
- School of Sciences, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Iván Ramos-Martínez
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris Est Créteil (UPEC), Créteil, France
| | - Laura Pérez-Campos Mayoral
- Research Centre Medicine UNAM-UABJO, Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Eduardo Pérez-Campos
- Biochemistry and Immunology Unit, National Technological of Mexico/ITOaxaca, Oaxaca, Mexico
- Research Centre Medicine UNAM-UABJO, Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | - Gabriel Mayoral Andrade
- Research Centre Medicine UNAM-UABJO, Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Marco V. José
- Theoretical Biology Group, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
16
|
Pollard KM. Perspective: The Lung, Particles, Fibers, Nanomaterials, and Autoimmunity. Front Immunol 2020; 11:587136. [PMID: 33391263 PMCID: PMC7775503 DOI: 10.3389/fimmu.2020.587136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Studies have shown that a wide range of factors including drugs, chemicals, microbes, and other environmental agents can induce pre-clinical autoimmunity. However, only a few have been confidently linked to autoimmune diseases. Among these are exposures to inhaled particulates that are known to be associated with autoimmune diseases such as lupus and rheumatoid arthritis. In this article, the potential of particle, fiber, and nanomaterial exposures to induce autoimmunity is discussed. It is hypothesized that inhalation of particulate material known to be associated with human autoimmune diseases, such as cigarette smoke and crystalline silica, results in a complex interplay of a number of pathological processes, including, toxicity, oxidative stress, cell and tissue damage, chronic inflammation, post-translational modification of self-antigens, and the formation of lymphoid follicles that provide a milieu for the accumulation of autoreactive B and T cells necessary for the development and persistence of autoimmune responses, leading to disease. Although experimental studies show nanomaterials are capable of inducing several of the above features, there is no evidence that this matures to autoimmune disease. The procession of events hypothesized here provides a foundation from which to pursue experimental studies to determine the potential of other environmental exposures to induce autoimmunity and autoimmune disease.
Collapse
Affiliation(s)
- K Michael Pollard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
17
|
Verdon R, Gillies SL, Brown DM, Henry T, Tran L, Tyler CR, Rossi AG, Stone V, Johnston HJ. Neutrophil activation by nanomaterials in vitro: comparing strengths and limitations of primary human cells with those of an immortalized (HL-60) cell line. Nanotoxicology 2020; 15:1-20. [PMID: 33272088 DOI: 10.1080/17435390.2020.1834635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Assessment of nanomaterial (NM) induced inflammatory responses has largely relied on rodent testing via measurement of leukocyte accumulation in target organs. Despite observations that NMs activate neutrophil driven inflammatory responses in vivo, a limited number of studies have investigated neutrophil responses to NMs in vitro. We compared responses between the human neutrophil-like HL-60 cell line and human primary neutrophils following exposure to silver (Ag), zinc oxide (ZnO), copper oxide (CuO) and titanium dioxide (TiO2) NMs. NM cytotoxicity and neutrophil activation were assessed by measuring cellular metabolic activity, cytokine production, respiratory burst, and release of neutrophil extracellular traps. We observed a similar pattern of response between HL-60 cells and primary neutrophils, however we report that some neutrophil functions are compromised in the cell line. Ag NMs were consistently observed to stimulate neutrophil activation, with CuO NMs inducing similar though weaker responses. TiO2 NMs did not induce a neutrophil response in either cell type. Interestingly, ZnO NMs readily induced activation of HL-60 cells but did not appear to activate primary cells. Our findings are relevant to the development of a tiered testing strategy for NM hazard assessment which promotes the use of non-rodent models. Whilst we acknowledge that HL-60 cells may not be a perfect substitute for primary cells and require further investigation regarding their ability to predict neutrophil activation, we recommend their use for initial screening of NM-induced inflammation. Primary human neutrophils can then be used for more focused assessments of neutrophil activation before progressing to in vivo models where necessary.
Collapse
Affiliation(s)
- Rachel Verdon
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | | | - David M Brown
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | - Theodore Henry
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | - Lang Tran
- Statistics and Toxicology Section, Institute of Occupational Medicine, Edinburgh, UK
| | - Charles R Tyler
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Vicki Stone
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh, UK
| | | |
Collapse
|
18
|
Billing AM, Knudsen KB, Chetwynd AJ, Ellis LJA, Tang SVY, Berthing T, Wallin H, Lynch I, Vogel U, Kjeldsen F. Fast and Robust Proteome Screening Platform Identifies Neutrophil Extracellular Trap Formation in the Lung in Response to Cobalt Ferrite Nanoparticles. ACS NANO 2020; 14:4096-4110. [PMID: 32167280 PMCID: PMC7498156 DOI: 10.1021/acsnano.9b08818] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/13/2020] [Indexed: 05/28/2023]
Abstract
Despite broad application of magnetic nanoparticles in biomedicine and electronics, only a few in vivo studies on biocompatibility are available. In this study, toxicity of magnetic metal oxide nanoparticles on the respiratory system was examined in vivo by single intratracheal instillation in mice. Bronchoalveolar lavage fluid (BALF) samples were collected for proteome analyses by LC-MS/MS, testing Fe3O4 nanoparticles doped with increasing amounts of cobalt (Fe3O4, CoFe2O4 with an iron to cobalt ratio 5:1, 3:1, 1:3, Co3O4) at two doses (54 μg, 162 μg per animal) and two time points (day 1 and 3 days postinstillation). In discovery phase, in-depth proteome profiling of a few representative samples allowed for comprehensive pathway analyses. Clustering of the 681 differentially expressed proteins (FDR < 0.05) revealed general as well as metal oxide specific responses with an overall strong induction of innate immunity and activation of the complement system. The highest expression increase could be found for a cluster of 39 proteins, which displayed strong dose-dependency to iron oxide and can be attributed to neutrophil extracellular trap (NET) formation. In-depth proteome analysis expanded the knowledge of in vivo NET formation. During screening, all BALF samples of the study (n = 166) were measured label-free as single-injections after a short gradient (21 min) LC separation using the Evosep One system, validating the findings from the discovery and defining protein signatures which enable discrimination of lung inflammation. We demonstrate a proteomics-based toxicity screening with high sample throughput easily transferrable to other nanoparticle types. Data are available via ProteomeXchange with identifier PXD016148.
Collapse
Affiliation(s)
- Anja M. Billing
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense 5230, Denmark
| | - Kristina B. Knudsen
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Andrew J. Chetwynd
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Laura-Jayne A. Ellis
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | | | - Trine Berthing
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Håkan Wallin
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Iseult Lynch
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Ulla Vogel
- National
Research Centre for the Working Environment, Copenhagen 2100, Denmark
- Department
of Health Technology, Technical University
of Denmark, Lyngby 2800, Denmark
| | - Frank Kjeldsen
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense 5230, Denmark
| |
Collapse
|
19
|
Limongi T, Susa F, Cauda V. Nanoparticles for hematologic diseases detection and treatment. HEMATOLOGY & MEDICAL ONCOLOGY 2019; 4:1000183. [PMID: 33860108 PMCID: PMC7610588 DOI: 10.15761/hmo.1000183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanotechnology, as an interdisciplinary science, combines engineering, physics, material sciences, and chemistry with the biomedicine knowhow, trying the management of a wide range of diseases. Nanoparticle-based devices holding tumor imaging, targeting and therapy capabilities are formerly under study. Since conventional hematological therapies are sometimes defined by reduced selectivity, low therapeutic efficacy and many side effects, in this review we discuss the potential advantages of the NPs' use in alternative/combined strategies. In the introduction the basic notion of nanomedicine and nanoparticles' classification are described, while in the main text nanodiagnostics, nanotherapeutics and theranostics solutions coming out from the use of a wide-ranging NPs availability are listed and discussed.
Collapse
Affiliation(s)
- Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Francesca Susa
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|