1
|
Capuzzo AM, Piccolantonio G, Negri A, Bontempi P, Lacavalla MA, Malatesta M, Scambi I, Mariotti R, Lüdtke-Buzug K, Corsi M, Marzola P. Comparison between USPIOs and SPIOs for Multimodal Imaging of Extracellular Vesicles Extracted from Adipose Tissue-Derived Adult Stem Cells. Int J Mol Sci 2024; 25:9701. [PMID: 39273647 PMCID: PMC11395141 DOI: 10.3390/ijms25179701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Adipose tissue-derived adult stem (ADAS) cells and extracellular vesicle (EV) therapy offer promising avenues for treating neurodegenerative diseases due to their accessibility and potential for autologous cell transplantation. However, the clinical application of ADAS cells or EVs is limited by the challenge of precisely identifying them in specific regions of interest. This study compares two superparamagnetic iron oxide nanoparticles, differing mainly in size, to determine their efficacy for allowing non-invasive ADAS tracking via MRI/MPI and indirect labeling of EVs. We compared a USPIO (about 5 nm) with an SPIO (Resovist®, about 70 nm). A physicochemical characterization of nanoparticles was conducted using DLS, TEM, MRI, and MPI. ADAS cells were labeled with the two nanoparticles, and their viability was assessed via MTT assay. MRI detected labeled cells, while TEM and Prussian Blue staining were employed to confirm cell uptake. The results revealed that Resovist® exhibited higher transversal relaxivity value than USPIO and, consequently, allows for detection with higher sensitivity by MRI. A 200 µgFe/mL concentration was identified as optimal for ADAS labeling. MPI detected only Resovist®. The findings suggest that Resovist® may offer enhanced detection of ADAS cells and EVs, making it suitable for multimodal imaging. Preliminary results obtained by extracting EVs from ADAS cells labeled with Resovist® indicate that EVs retain the nanoparticles, paving the way to an efficient and multimodal detection of EVs.
Collapse
Affiliation(s)
- Arnaud M Capuzzo
- Department of Diagnostics and Public Health, University of Verona, Strada le Grazie, 8, 37134 Verona, Italy
| | - Giusi Piccolantonio
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie, 15, 37134 Verona, Italy
| | - Alessandro Negri
- Department of Diagnostics and Public Health, University of Verona, Strada le Grazie, 8, 37134 Verona, Italy
| | - Pietro Bontempi
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie, 15, 37134 Verona, Italy
| | - Maria A Lacavalla
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie, 15, 37134 Verona, Italy
- Department of Chemical Science, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Manuela Malatesta
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Ilaria Scambi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Raffaella Mariotti
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Kerstin Lüdtke-Buzug
- Institute of Medical Engineering, University of Luebeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, 23562 Lübeck, Germany
| | - Mauro Corsi
- Evotec Consultant, Via A. Fleming 4, 37135 Verona, Italy
| | - Pasquina Marzola
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie, 15, 37134 Verona, Italy
| |
Collapse
|
2
|
Almahmoud A, Parekh HS, Paterson BM, Tupally KR, Vegh V. Intranasal delivery of imaging agents to the brain. Theranostics 2024; 14:5022-5101. [PMID: 39267777 PMCID: PMC11388076 DOI: 10.7150/thno.98473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
The potential of intranasal administered imaging agents to altogether bypass the blood-brain barrier offers a promising non-invasive approach for delivery directly to the brain. This review provides a comprehensive analysis of the advancements and challenges of delivering neuroimaging agents to the brain by way of the intranasal route, focusing on the various imaging modalities and their applications in central nervous system diagnostics and therapeutics. The various imaging modalities provide distinct insights into the pharmacokinetics, biodistribution, and specific interactions of imaging agents within the brain, facilitated by the use of tailored tracers and contrast agents. Methods: A comprehensive literature search spanned PubMed, Scopus, Embase, and Web of Science, covering publications from 1989 to 2024 inclusive. Starting with advancements in tracer development, we going to explore the rationale for integration of imaging techniques, and the critical role novel formulations such as nanoparticles, nano- and micro-emulsions in enhancing imaging agent delivery and visualisation. Results: The review highlights the use of innovative formulations in improving intranasal administration of neuroimaging agents, showcasing their ability to navigate the complex anatomical and physiological barriers of the nose-to-brain pathway. Various imaging techniques, MRI, PET, SPECT, CT, FUS and OI, were evaluated for their effectiveness in tracking these agents. The findings indicate significant improvements in brain targeting efficiency, rapid uptake, and sustained brain presence using innovative formulations. Conclusion: Future directions involve the development of optimised tracers tailored for intranasal administration, the potential of multimodal imaging approaches, and the implications of these advancements for diagnosing and treating neurological disorders.
Collapse
Affiliation(s)
- Abdallah Almahmoud
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Department of Allied Medical Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Harendra S Parekh
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Brett M Paterson
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | | | - Viktor Vegh
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Cai ZM, Li ZZ, Zhong NN, Cao LM, Xiao Y, Li JQ, Huo FY, Liu B, Xu C, Zhao Y, Rao L, Bu LL. Revolutionizing lymph node metastasis imaging: the role of drug delivery systems and future perspectives. J Nanobiotechnology 2024; 22:135. [PMID: 38553735 PMCID: PMC10979629 DOI: 10.1186/s12951-024-02408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
The deployment of imaging examinations has evolved into a robust approach for the diagnosis of lymph node metastasis (LNM). The advancement of technology, coupled with the introduction of innovative imaging drugs, has led to the incorporation of an increasingly diverse array of imaging techniques into clinical practice. Nonetheless, conventional methods of administering imaging agents persist in presenting certain drawbacks and side effects. The employment of controlled drug delivery systems (DDSs) as a conduit for transporting imaging agents offers a promising solution to ameliorate these limitations intrinsic to metastatic lymph node (LN) imaging, thereby augmenting diagnostic precision. Within the scope of this review, we elucidate the historical context of LN imaging and encapsulate the frequently employed DDSs in conjunction with a variety of imaging techniques, specifically for metastatic LN imaging. Moreover, we engage in a discourse on the conceptualization and practical application of fusing diagnosis and treatment by employing DDSs. Finally, we venture into prospective applications of DDSs in the realm of LNM imaging and share our perspective on the potential trajectory of DDS development.
Collapse
Affiliation(s)
- Ze-Min Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Jia-Qi Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, China
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, QLD, 4066, Australia
| | - Yi Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China.
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
4
|
Ding J, He L, Yang L, Cheng L, Zhao Z, Luo B, Jia Y. Novel Nanoprobe with Combined Ultrasonography/Chemical Exchange Saturation Transfer Magnetic Resonance Imaging for Precise Diagnosis of Tumors. Pharmaceutics 2023; 15:2693. [PMID: 38140034 PMCID: PMC10747786 DOI: 10.3390/pharmaceutics15122693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Given that cancer mortality is usually due to a late diagnosis, early detection is crucial to improve the patient's results and prevent cancer-related death. Imaging technology based on novel nanomaterials has attracted much attention for early-stage cancer diagnosis. In this study, a new block copolymer, poly(ethylene glycol)-poly(l-lactide) diblock copolymer (PEG-PLLA), was synthesized by the ring-opening polymerization method and thoroughly characterized using Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (H-NMR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The obtained PEG-PLLA was used to prepare nanoparticles encapsulated with perfluoropentane and salicylic acid by the emulsion-solvent evaporation method, resulting in a new dual-mode nano-image probe (PEG-PLLA@SA·PFP). The zeta potential and mean diameter of the obtained nanoparticles were measured using dynamic light scattering (DLS) with a Malvern Zetersizer Nano. The in vitro biocompatibility of the PEG-PLLA nanoparticles was evaluated with cell migration, hemolysis, and cytotoxicity assays. Ultrasonic imaging was performed using an ultrasonic imaging apparatus, and chemical exchange saturation transfer (CEST) MRI was conducted on a 7.0 T animal scanner. The results of IR and NMR confirmed that the PEG-PLLA was successfully synthesized. The particle size and negative charge of the nanoparticles were 223.8 ± 2.5 nm and -39.6 ± 1.9 mV, respectively. The polydispersity of the diameter was 0.153 ± 0.020. These nanoparticles possessed good stability at 4 °C for about one month. The results of cytotoxicity, cell migration, and hemolysis assays showed that the carrier material was biocompatible. Finally, PEG-PLLA nanoparticles were able to significantly enhance the imaging effect of tumors by the irradiation of ultrasound and saturation by a radiofrequency pulse, respectively. In conclusion, these nanoparticles exhibit promising dual-mode capabilities for US/CEST MR imaging.
Collapse
Affiliation(s)
- Jieqiong Ding
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (J.D.); (L.H.); (L.C.)
| | - Liu He
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (J.D.); (L.H.); (L.C.)
| | - Lin Yang
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China;
| | - Liyuan Cheng
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (J.D.); (L.H.); (L.C.)
| | - Zhiwei Zhao
- Department of Radiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, China;
| | - Binhua Luo
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (J.D.); (L.H.); (L.C.)
| | - Yanlong Jia
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
| |
Collapse
|
5
|
PEGylated Magnetite/Hydroxyapatite: A Green Nanocomposite for T2-Weighted MRI and Curcumin Carrying. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1337588. [PMID: 35722138 PMCID: PMC9201731 DOI: 10.1155/2022/1337588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 12/20/2022]
Abstract
Background The design of new magnetic resonance imaging (MRI) contrast media with chemotherapy drug-carrying capacity has an important role in diagnostic and therapeutic purposes. This study aimed to synthesize a polyethylene glycol (PEG)-coated magnetite/hydroxyapatite nanocomposite as an MRI contrast agent investigate its curcumin loading/release properties and consider the cytotoxicity effect of the curcumin-loaded nanocomposite on different cell lines. Materials and Methods PEGylated magnetite/hydroxyapatite (PMHA) nanocomposite was synthesized and characterized using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, vibrating sample magnetometry, and energy dispersive X-ray analysis. MTT assay was performed to consider the A549, MCF-7, and MRC-5 cells toxicity of the PMHA and the curcumin-loaded nanocomposite. The r2 relaxivity of the nanocomposite was determined by an MRI device. The curcumin loading and its release from the nanocomposite at pH of 7.4 and 5.5 were investigated. Results The spherical nanocomposite showed an average size of 20 nm and a superparamagnetic property. PMHA nanocomposite was highly cytocompatible, while the curcumin-loaded nanocomposite showed significant cytotoxicity for A549 and a much higher toxic effect on MCF-7 cancer cells. The r2 relaxivity was measured as 120 mM−1S−1. The curcumin loading capacity of PMHA was 1.9 mg/g, and the curcumin release profile showed a pH-dependent sustained release of the anti-cancer drug that was higher for pH of 5.5. Conclusion The high r2 relaxivity of PMHA nanocomposite and sustained release of curcumin from the loaded one at the pH of tumor environment suggest that the nanocomposite is a potential candidate for T2-weighted MRI and cancer treatment.
Collapse
|
6
|
Wang B, Wang Y, Tan Y, Guo J, Chen H, Wu PY, Wang X, Zhang H. Assessment of Fasudil on Contrast-Associated Acute Kidney Injury Using Multiparametric Renal MRI. Front Pharmacol 2022; 13:905547. [PMID: 35784704 PMCID: PMC9242620 DOI: 10.3389/fphar.2022.905547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
Aims: To evaluate the utility of fasudil in a rat model of contrast-associated acute kidney injury (CA-AKI) and explore its underlying mechanism through multiparametric renal magnetic resonance imaging (mpMRI). Methods: Experimental rats (n = 72) were grouped as follows: controls (n = 24), CA-AKI (n = 24), or CA-AKI + Fasudil (n = 24). All animals underwent two mpMRI studies (arterial spin labeling, T1 and T2 mapping) at baseline and post iopromide/fasudil injection (Days 1, 3, 7, and 13 respectively). Relative change in renal blood flow (ΔRBF), T1 (ΔT1) and T2 (ΔT2) values were assessed at specified time points. Serum levels of cystatin C (CysC) and interleukin-1β (IL-1β), and urinary neutrophil gelatinase-associated lipocalin (NGAL) concentrations were tested as laboratory biomarkers, in addition to examining renal histology and expression levels of various proteins (Rho-kinase [ROCK], α-smooth muscle actin [α-SMA]), hypoxia-inducible factor-1α (HIF-1α), and transforming growth factor-β1 (TGF-β1) that regulate renal fibrosis and hypoxia. Results: Compared with the control group, serum levels of CysC and IL-1β, and urinary NGAL concentrations were clearly increased from Day 1 to Day 13 in the CA-AKI group (all p < 0.05). There were significant reductions in ΔT2 values on Days 1 and 3, and ΔT1 reductions were significantly more pronounced at all time points (Days 1–13) in the CA-AKI + Fasudil group (vs. CA-AKI) (all p < 0.05). Fasudil treatment lowered expression levels of ROCK-1, and p-MYPT1/MYPT1 proteins induced by iopromide, decreasing TGF-β1 expression and suppressing both extracellular matrix accumulation and α-SMA expression relative to untreated status (all p < 0.05). Fasudil also enhanced PHD2 transcription and inhibition of HIF-1α expression after CA-AKI. Conclusions: In the context of CA-AKI, fasudil appears to reduce renal hypoxia, fibrosis, and dysfunction by activating (Rho/ROCK) or inhibiting (TGF-β1, HIF-1α) certain signaling pathways and reducing α-SMA expression. Multiparametric MRI may be a viable noninvasive tool for monitoring CA-AKI pathophysiology during fasudil therapy.
Collapse
Affiliation(s)
- Bin Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, China
| | - Yongfang Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Tan
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinxia Guo
- GE Healthcare MR Research China, Beijing, China
| | - Haoyuan Chen
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, China
| | - Pu-Yeh Wu
- GE Healthcare MR Research China, Beijing, China
| | - Xiaochun Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaochun Wang, ; Hui Zhang,
| | - Hui Zhang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaochun Wang, ; Hui Zhang,
| |
Collapse
|
7
|
Chen C, Ge J, Gao Y, Chen L, Cui J, Zeng J, Gao M. Ultrasmall superparamagnetic iron oxide nanoparticles: A next generation contrast agent for magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1740. [PMID: 34296533 DOI: 10.1002/wnan.1740] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
As a research hotspot, the development of magnetic resonance imaging (MRI) contrast agents has attracted great attention over the past decades for improving the accuracy of diagnosis. Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles with core diameter smaller than 5.0 nm are expected to become a next generation of contrast agents owing to their excellent MRI performance, long blood circulation time upon proper surface modification, renal clearance capacity, and remarkable biosafety profile. On top of these merits, USPIO nanoparticles are used for developing not only T1 contrast agents, but also T2 /T1 switchable contrast agents via assembly/disassembly approaches. In recent years, as a new type of contrast agents, USPIO nanoparticles have shown considerable applications in the diagnosis of various diseases such as vascular pathological changes and inflammations apart from malignant tumors. In this review, we are focusing on the state-of-the-art developments and the latest applications of USPIO nanoparticles as MRI contrast agents to discuss their advantages and future prospects. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Can Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Yun Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jiabin Cui
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China.,Shanghai University of Medicine and Health Sciences (SUMHS), Shanghai, China
| |
Collapse
|
8
|
Sun Y, Ran H, Liu F. Polymer-Based Materials and Their Applications in Image-Guided Cancer Therapy. Curr Med Chem 2021; 29:1352-1368. [PMID: 34137360 DOI: 10.2174/0929867328666210616160717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Advances in nanotechnology have enabled the combination of disease diagnosis and therapy into a single nano package that has tremendous potential for the development of new theranostic strategies. The variety of polymer-based materials has grown exponentially over the past several decades. Such materials have great potential as carriers in disease detection imaging and image monitoring and in systems for the precise delivery of drugs to specific target sites. OBJECTIVE In the present article, we review recent key developments in the synthesis of polymer-based materials for various medical applications and their clinical trials. CONCLUSION There is a growing range of multi-faceted, polymer-based materials with various functions. These functions include carriers for image contrast agents, drug delivery systems, and real-time image-guided systems for noninvasive or minimally invasive therapeutic procedures for cancer therapy.
Collapse
Affiliation(s)
- Yang Sun
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, 400010 Chongqing, China
| | - Haitao Ran
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, 400010 Chongqing, China
| | - Fan Liu
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, 400010 Chongqing, China
| |
Collapse
|
9
|
Geppert M, Himly M. Iron Oxide Nanoparticles in Bioimaging - An Immune Perspective. Front Immunol 2021; 12:688927. [PMID: 34211476 PMCID: PMC8239972 DOI: 10.3389/fimmu.2021.688927] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/01/2021] [Indexed: 01/22/2023] Open
Abstract
Iron oxide nanoparticles (IONPs) bear big hopes in nanomedicine due to their (potential) applications in tumor therapy, drug delivery or bioimaging. However, as foreign entities, such particles may be recognized by the immune system and, thus, lead to inflammation, hypersensitivity or anaphylactic shock. In addition, an overload with iron is known to cause oxidative stress. In this short review, we summarize the biological effects of such particles with a major focus on IONP-formulations used for bioimaging purposes and their effects on the human immune system. We conclude that especially the characteristics of the particles (size, shape, surface charge, coating, etc.) as well as the presence of bystander substances, such as bacterial endotoxin are important factors determining the resulting biological and immunological effects of IONPs. Further studies are needed in order to establish clear structure-activity relationships.
Collapse
Affiliation(s)
- Mark Geppert
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
10
|
Xu Y, Zheng H, Schumacher D, Liehn EA, Slabu I, Rusu M. Recent Advancements of Specific Functionalized Surfaces of Magnetic Nano- and Microparticles as a Theranostics Source in Biomedicine. ACS Biomater Sci Eng 2021; 7:1914-1932. [PMID: 33856199 DOI: 10.1021/acsbiomaterials.0c01393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Magnetic nano- and microparticles (MNMPs) belong to a highly versatile class of colloids with actuator and sensor properties that have been broadly studied for their application in theranostics such as molecular imaging and drug delivery. The use of advanced biocompatible, biodegradable polymers and polyelectrolytes as MNMP coating materials is essential to ensure the stability of MNMPs and enable efficient drug release while at the same time preventing cytotoxic effects. In the past years, huge progress has been made in terms of the design of MNMPs. Especially, the understanding of coating formation with respect to control of drug loading and release kinetics on the molecular level has significantly advanced. In this review, recent advancements in the field of MNMP surface engineering and the applicability of MNMPs in research fields of medical imaging, diagnosis, and nanotherapeutics are presented and discussed. Furthermore, in this review the main emphasis is put on the manipulation of biological specimens and cell trafficking, for which MNMPs represent a favorable tool enabling transport processes of drugs through cell membranes. Finally, challenges and future perspectives for applications of MNMPs as theranostic nanomaterials are discussed.
Collapse
Affiliation(s)
- Yichen Xu
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany
| | - Huabo Zheng
- Department of Cardiology, Pulmonology, Angiology, and Intensive Care, University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany
| | - David Schumacher
- Department of Anesthesiology, University Hospital, RWTH Aachen, 52074 Aachen, Germany
| | - Elisa Anamaria Liehn
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany.,Department of Cardiology, Pulmonology, Angiology, and Intensive Care, University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany.,Department of Pathology, Institute of Pathology "Victor Babes", Splaiul Independentei nr. 99-101, Sector 5, 050096 Bucharest, Romania
| | - Ioana Slabu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen, Pauwelstr. 20, 52074 Aachen, Germany
| | - Mihaela Rusu
- Department of Pathology, Institute of Pathology "Victor Babes", Splaiul Independentei nr. 99-101, Sector 5, 050096 Bucharest, Romania.,Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany
| |
Collapse
|
11
|
Ren S, Song L, Tian Y, Zhu L, Guo K, Zhang H, Wang Z. Emodin-Conjugated PEGylation of Fe 3O 4 Nanoparticles for FI/MRI Dual-Modal Imaging and Therapy in Pancreatic Cancer. Int J Nanomedicine 2021; 16:7463-7478. [PMID: 34785894 PMCID: PMC8579871 DOI: 10.2147/ijn.s335588] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) remains a difficult tumor to diagnose and treat. It is often diagnosed as advanced by reason of the anatomical structure of the deep retroperitoneal layer of the pancreas, lack of typical symptoms and effective screening methods to detect this malignancy, resulting in a low survival rate. Emodin (EMO) is an economical natural product with effective treatment and few side effects of cancer treatment. Magnetic nanoparticles (MNPs) can achieve multiplexed imaging and targeted therapy by loading a wide range of functional materials such as fluorescent dyes and therapeutic agents. PURPOSE The purpose of this study was to design and evaluate a multifunctional theranostic nanoplatform for PC diagnosis and treatment. METHODS In this study, we successfully developed EMO-loaded, Cy7-functionalized, PEG-coated Fe3O4 (Fe3O4-PEG-Cy7-EMO). Characteristics including morphology, hydrodynamic size, zeta potentials, stability, and magnetic properties of Fe3O4-PEG-Cy7-EMO were evaluated. Fluorescence imaging (FI)/magnetic resonance imaging (MRI) and therapeutic treatment were examined in vitro and in vivo. RESULTS Fe3O4-PEG-Cy7-EMO nanoparticles had a core size of 9.9 ± 1.2 nm, which showed long-time stability and FI/MRI properties. Bio-transmission electron microscopy (bio-TEM) results showed that Fe3O4-PEG-Cy7-EMO nanoparticles were endocytosed into BxPC-3 cells, while few were observed in hTERT-HPNE cells. Prussian blue staining also confirmed that BxPC-3 cells have a stronger phagocytic ability as compared to hTERT-HPNE cells. Additionally, Fe3O4-PEG-Cy7-EMO had a stronger inhibition effect on BxPC-3 cells than Fe3O4-PEG and EMO. The hemolysis experiment proved that Fe3O4-PEG-Cy7-EMO can be used in vivo experiments. In vivo analysis demonstrated that Fe3O4-PEG-Cy7-EMO enabled FI/MRI dual-modal imaging and targeted therapy in pancreatic tumor xenografted mice. CONCLUSION Fe3O4-PEG-Cy7-EMO may serve as a potential theranostic nanoplatform for PC.
Collapse
Affiliation(s)
- Shuai Ren
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, People’s Republic of China
- Correspondence: Shuai Ren; Zhongqiu Wang Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, Jiangsu Province, 210029, People’s Republic of China Email ;
| | - Lina Song
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Ying Tian
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Li Zhu
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Kai Guo
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Huifeng Zhang
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| | - Zhongqiu Wang
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, People’s Republic of China
| |
Collapse
|