1
|
González-Belman OF, Jiménez-Halla JOC, González G, Báez JE. Comparison of three elements (In, Sn, and Sb) in the same period as catalysts in the ring-opening polymerization of l-lactide: from amorphous to semicrystalline polyesters. RSC Adv 2024; 14:34733-34745. [PMID: 39483385 PMCID: PMC11526846 DOI: 10.1039/d4ra06783e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
The ring-opening polymerization (ROP) of l-lactide (l-LA) is the main method for synthesizing poly(l-lactide) (PLLA), in which choosing the catalyst is one of the most important parameters. In this work, we focused on the systematic study of catalysts based on p-block elements from period 5, such as indium(iii), tin(ii), tin(iv) and antimony(iii) acetates, which displayed contrasting performances influenced by the oxidation state of the metal center. Analysis of the obtained oligomers by different techniques, including nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), polarized optical microscopy (POM) and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF), revealed the selectivity of each catalyst toward the ROP of l-LA. Tin(ii) acetate showed the best performance, making it the best catalyst of this series for synthesizing PLLA. Indium(iii) and tin(ii) acetates induced an amorphous and semicrystalline polyester, respectively. The kinetic study evidenced the excellent performance of tin(ii) acetate in the ROP of l-LA. This catalyst reached high conversions in a quarter of the total reaction time, positioning it as the most catalytically active of the selected p-block acetate catalysts. Finally, the coordination-insertion mechanism by the catalyst in the initiation step was corroborated through the development of a mechanistic study applying the density functional theory (DFT).
Collapse
Affiliation(s)
- Oscar F González-Belman
- Department of Chemistry, University of Guanajuato (UG) Noria Alta S/N 36050 Guanajuato Gto Mexico
| | - J Oscar C Jiménez-Halla
- Department of Chemistry, University of Guanajuato (UG) Noria Alta S/N 36050 Guanajuato Gto Mexico
| | - Gerardo González
- Department of Chemistry, University of Guanajuato (UG) Noria Alta S/N 36050 Guanajuato Gto Mexico
| | - José E Báez
- Department of Chemistry, University of Guanajuato (UG) Noria Alta S/N 36050 Guanajuato Gto Mexico
| |
Collapse
|
2
|
Jaworska J, Sobota M, Pastusiak M, Kawalec M, Janeczek H, Rychter P, Lewicka K, Dobrzyński P. Synthesis of Polyacids by Copolymerization of l-Lactide with MTC-COOH Using Zn[(acac)(L)H 2O] Complex as an Initiator. Polymers (Basel) 2022; 14:polym14030503. [PMID: 35160492 PMCID: PMC8839564 DOI: 10.3390/polym14030503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
This work presents the results of research on the preparation of bioresorbable functional polyestercarbonates containing side carboxyl groups. These copolymers were synthesized in two ways: the classic two-step process involving the copolymerization of L-lactide and a cyclic carbonate containing a blocked side carboxylate group in the form of a benzyl ester (MTC-Bz) and its subsequent deprotection, and a new way involving the one-step copolymerization of L-lactide with this same carbonate, but containing an unprotected carboxyl group (MTC-COOH). Both reactions were carried out under identical conditions in the melt, using a specially selected zinc chelate complex, with Zn [(acac)(L)H2O] (where: L-N-(pyridin-4-ylmethylene) phenylalaninate ligand) as an initiator. The differences in the kinetics of both reactions and their courses were pictured. The reactivity of the MTC-COOH monomer without a blocking group in the studied co-polymerization was much higher, even slightly higher than L-lactide, which allowed the practically complete conversion of the comonomers in a much shorter time. The basic final properties of the obtained copolymers and the microstructures of their chains were determined. The single-step synthesis of biodegradable polyacids was much simpler. Contrary to the conventional method, this made it possible to obtain copolymers containing all carbonate units with carboxyl groups, without even traces of the heavy metals used in the deprotection of the carboxyl groups, the presence of which is known to be very difficult to completely remove from the copolymers obtained in the two-step process.
Collapse
Affiliation(s)
- Joanna Jaworska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej Str., 41-819 Zabrze, Poland; (J.J.); (M.S.); (M.P.); (M.K.); (H.J.)
| | - Michał Sobota
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej Str., 41-819 Zabrze, Poland; (J.J.); (M.S.); (M.P.); (M.K.); (H.J.)
| | - Małgorzata Pastusiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej Str., 41-819 Zabrze, Poland; (J.J.); (M.S.); (M.P.); (M.K.); (H.J.)
| | - Michał Kawalec
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej Str., 41-819 Zabrze, Poland; (J.J.); (M.S.); (M.P.); (M.K.); (H.J.)
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej Str., 41-819 Zabrze, Poland; (J.J.); (M.S.); (M.P.); (M.K.); (H.J.)
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland; (P.R.); (K.L.)
| | - Kamila Lewicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland; (P.R.); (K.L.)
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej Str., 41-819 Zabrze, Poland; (J.J.); (M.S.); (M.P.); (M.K.); (H.J.)
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland; (P.R.); (K.L.)
- Correspondence:
| |
Collapse
|
3
|
Lord RM, Janeway FD, Bird L, McGowan PC. Bis(phenyl-β-diketonato)titanium(IV) ethoxide complexes: Ring-opening polymerization of l-lactide by solvent-free microwave irradiation. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Synthesis and Characterization of New Biodegradable Injectable Thermosensitive Smart Hydrogels for 5-Fluorouracil Delivery. Int J Mol Sci 2021; 22:ijms22158330. [PMID: 34361098 PMCID: PMC8347305 DOI: 10.3390/ijms22158330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022] Open
Abstract
In this paper, injectable, thermosensitive smart hydrogel local drug delivery systems (LDDSs) releasing the model antitumour drug 5-fluorouracil (5-FU) were developed. The systems were based on biodegradable triblock copolymers synthesized via ring opening polymerization (ROP) of ε-caprolactone (CL) in the presence of poly(ethylene glycol) (PEG) and zirconium(IV) acetylacetonate (Zr(acac)4), as co-initiator and catalyst, respectively. The structure, molecular weight (Mn) and molecular weight distribution (Đ) of the synthesized materials was studied in detail using nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) techniques; the optimal synthesis conditions were determined. The structure corresponded well to the theoretical assumptions. The produced hydrogels demonstrated a sharp sol–gel transition at temperature close to physiological value, forming a stable gel with good mechanical properties at 37 °C. The kinetics and mechanism of in vitro 5-FU release were characterized by zero order, first order, Higuchi and Korsmeyer–Peppas mathematical models. The obtained results indicate good release control; the kinetics were generally defined as first order according to the predominant diffusion mechanism; and the total drug release time was approximately 12 h. The copolymers were considered to be biodegradable and non-toxic; the resulting hydrogels appear to be promising as short-term LDDSs, potentially useful in antitumor therapy.
Collapse
|
5
|
Barczyńska-Felusiak R, Pastusiak M, Rychter P, Kaczmarczyk B, Sobota M, Wanic A, Kaps A, Jaworska-Kik M, Orchel A, Dobrzyński P. Synthesis of the Bacteriostatic Poly(l-Lactide) by Using Zinc (II)[(acac)(L)H 2O] (L = Aminoacid-Based Chelate Ligands) as an Effective ROP Initiator. Int J Mol Sci 2021; 22:ijms22136950. [PMID: 34203313 PMCID: PMC8268828 DOI: 10.3390/ijms22136950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
The paper presents a synthesis of poly(l-lactide) with bacteriostatic properties. This polymer was obtained by ring-opening polymerization of the lactide initiated by selected low-toxic zinc complexes, Zn[(acac)(L)H2O], where L represents N-(pyridin-4-ylmethylene) tryptophan or N-(2-pyridin-4-ylethylidene) phenylalanine. These complexes were obtained by reaction of Zn[(acac)2 H2O] and Schiff bases, the products of the condensation of amino acids and 4-pyridinecarboxaldehyde. The composition, structure, and geometry of the synthesized complexes were determined by NMR and FTIR spectroscopy, elemental analysis, and molecular modeling. Both complexes showed the geometry of a distorted trigonal bipyramid. The antibacterial and antifungal activities of both complexes were found to be much stronger than those of the primary Schiff bases. The present study showed a higher efficiency of polymerization when initiated by the obtained zinc complexes than when initiated by the zinc(II) acetylacetonate complex. The synthesized polylactide showed antibacterial properties, especially the product obtained by polymerization initiated by a zinc(II) complex with a ligand based on l-phenylalanine. The polylactide showed a particularly strong antimicrobial effect against Pseudomonas aeruginosa, Staphylococcus aureus, and Aspergillus brasiliensis. At the same time, this polymer does not exhibit fibroblast cytotoxicity.
Collapse
Affiliation(s)
- Renata Barczyńska-Felusiak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland; (R.B.-F.); (P.R.)
| | - Małgorzata Pastusiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej Str., 41-819 Zabrze, Poland; (M.P.); (B.K.); (M.S.); (A.W.)
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland; (R.B.-F.); (P.R.)
| | - Bożena Kaczmarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej Str., 41-819 Zabrze, Poland; (M.P.); (B.K.); (M.S.); (A.W.)
| | - Michał Sobota
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej Str., 41-819 Zabrze, Poland; (M.P.); (B.K.); (M.S.); (A.W.)
| | - Andrzej Wanic
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej Str., 41-819 Zabrze, Poland; (M.P.); (B.K.); (M.S.); (A.W.)
| | - Anna Kaps
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 8 Jedności Str., 41-208 Sosnowiec, Poland; (A.K.); (M.J.-K.); (A.O.)
| | - Marzena Jaworska-Kik
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 8 Jedności Str., 41-208 Sosnowiec, Poland; (A.K.); (M.J.-K.); (A.O.)
| | - Arkadiusz Orchel
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 8 Jedności Str., 41-208 Sosnowiec, Poland; (A.K.); (M.J.-K.); (A.O.)
| | - Piotr Dobrzyński
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland; (R.B.-F.); (P.R.)
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej Str., 41-819 Zabrze, Poland; (M.P.); (B.K.); (M.S.); (A.W.)
- Correspondence:
| |
Collapse
|
6
|
Kasiński A, Zielińska-Pisklak M, Oledzka E, Nałęcz-Jawecki G, Drobniewska A, Sobczak M. Hydrogels Based on Poly(Ether-Ester)s as Highly Controlled 5-Fluorouracil Delivery Systems-Synthesis and Characterization. MATERIALS 2020; 14:ma14010098. [PMID: 33379370 PMCID: PMC7795999 DOI: 10.3390/ma14010098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
A novel and promising hydrogel drug delivery system (DDS) capable of releasing 5‑fluorouracil (5-FU) in a prolonged and controlled manner was obtained using ε‑caprolactone‑poly(ethylene glycol) (CL-PEG) or rac‑lactide-poly(ethylene glycol) (rac‑LA-PEG) copolymers. Copolymers were synthesized via the ring-opening polymerization (ROP) process of cyclic monomers, ε‑caprolactone (CL) or rac-lactide (rac-LA), in the presence of zirconium(IV) octoate (Zr(Oct)4) and poly(ethylene glycol) 200 (PEG 200) as catalyst and initiator, respectively. Obtained triblock copolymers were characterized by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) techniques; the structure and tacticity of the macromolecules were determined. The relationship between the copolymer structure and the reaction conditions was evaluated. The optimal conditions were specified as 140 °C and 24 h. In the next step, CL-PEG and rac-LA-PEG copolymers were chemically crosslinked using hexamethylene diisocyanate (HDI). Selected hydrogels were subjected to in vitro antitumor drug release studies, and the release data were analyzed using zero-order, first-order, and Korsmeyer-Peppas mathematical models. Controlled and prolonged (up to 432 h) 5-FU release profiles were observed for all examined hydrogels with first-order or zero-order kinetics. The drug release mechanism was generally denoted as non-Fickian transport.
Collapse
Affiliation(s)
- Adam Kasiński
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland; (A.K.); (M.Z.-P.); (E.O.)
| | - Monika Zielińska-Pisklak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland; (A.K.); (M.Z.-P.); (E.O.)
| | - Ewa Oledzka
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland; (A.K.); (M.Z.-P.); (E.O.)
| | - Grzegorz Nałęcz-Jawecki
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland; (G.N.-J.); (A.D.)
| | - Agata Drobniewska
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland; (G.N.-J.); (A.D.)
| | - Marcin Sobczak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland; (A.K.); (M.Z.-P.); (E.O.)
- Correspondence:
| |
Collapse
|
7
|
Kalinin KT, Sedush NG, Dmitryakov PV, Chvalun SN. Kinetics of D,L-Lactide Polymerization Initiated with Zirconium Acetylacetonate. ChemistryOpen 2020; 9:1027-1032. [PMID: 33083201 PMCID: PMC7552909 DOI: 10.1002/open.202000101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/26/2020] [Indexed: 11/07/2022] Open
Abstract
The kinetic of D,L-lactide polymerization in presence of biocompatible zirconium acetylacetonate initiator was studied by differential scanning calorimetry in isothermal mode at various temperatures and initiator concentrations. The enthalpy of D,L-lactide polymerization measured directly in DSC cell was found to be ΔH=-17.8±1.4 kJ mol-1. Kinetic curves of D,L-lactide polymerization and propagation rate constants were determined for polymerization with zirconium acetylacetonate at concentrations of 250-1000 ppm and temperature of 160-220 °C. Using model or reversible polymerization the following kinetic and thermodynamic parameters were calculated: activation energy Ea =44.51±5.35 kJ mol-1, preexponential constant lnA=15.47±1.38, entropy of polymerization ΔS=-25.14 J mol-1 K-1. The effect of reaction conditions on the molecular weight of poly(D,L-lactide) was shown.
Collapse
|
8
|
Hopkins EJ, Krajewski SM, Crossman AS, Maharaj FDR, Schwanz LT, Marshak MP. Group 4 Organometallics Supported by Sterically Hindered
β
‐Diketonates. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Emily J. Hopkins
- Department of Chemistry University of Colorado Boulder CO 80303 Boulder USA
| | | | - Aaron S. Crossman
- Department of Chemistry University of Colorado Boulder CO 80303 Boulder USA
| | | | - Logan T. Schwanz
- Department of Chemistry University of Colorado Boulder CO 80303 Boulder USA
| | - Michael P. Marshak
- Department of Chemistry University of Colorado Boulder CO 80303 Boulder USA
| |
Collapse
|
9
|
Lewicka K, Rychter P, Pastusiak M, Janeczek H, Dobrzynski P. Biodegradable Blends of Grafted Dextrin with PLGA- block-PEG Copolymer as a Carrier for Controlled Release of Herbicides into Soil. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E832. [PMID: 32059530 PMCID: PMC7079626 DOI: 10.3390/ma13040832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 11/17/2022]
Abstract
The presented work aimed to test influence of poly(L-lactide-co-glycolide)-block-poly (ethylene oxide) copolymer modification by blending with grafted dextrin or maltodextrin on the course of degradation in soil and the usefulness of such material as a matrix in the controlled release of herbicides. The modification should be to obtain homogenous blends with better susceptibility to enzymatic degradation. Among all tested blends, which were proposed as a carrier for potential use in the controlled release of plant protection agents, PLGA-block-PEG copolymer blended with grafted dextrin yielded very promising results for their future applications, and what is very importantly proposed formulations provide herbicides in unchanged form into soil within few months of release. The modification PLAGA/PEG copolymer by blending with modificated dextrins affects the improvement of the release profile. The weekly release rates for both selected herbicides (metazachlor and pendimethalin) were constant for a period of 12 weeks. Enzymatic degradation of modified dextrin combined with leaching of the degradation products into medium caused significant erosion of the polymer matrix, thereby leading to acceleration of water diffusion into the polymer matrix and allowing for easier leaching of herbicides outside the matrix.
Collapse
Affiliation(s)
- Kamila Lewicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland; (K.L.); (P.R.)
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland; (K.L.); (P.R.)
| | - Małgorzata Pastusiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej Str., 41-819 Zabrze, Poland; (M.P.); (H.J.)
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej Str., 41-819 Zabrze, Poland; (M.P.); (H.J.)
| | - Piotr Dobrzynski
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland; (K.L.); (P.R.)
| |
Collapse
|
10
|
Synthesis and Properties of Bioresorbable Block Copolymers of l-Lactide, Glycolide, Butyl Succinate and Butyl Citrate. Polymers (Basel) 2020; 12:polym12010214. [PMID: 31952266 PMCID: PMC7023550 DOI: 10.3390/polym12010214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 12/31/2019] [Accepted: 01/13/2020] [Indexed: 11/29/2022] Open
Abstract
The paper presents the course of synthesis and properties of a series of block copolymers intended for biomedical applications, mainly as a material for forming scaffolds for tissue engineering. These materials were obtained in the polymerization of l-lactide and copolymerization of l-lactide with glycolide carried out using a number of macroinitiators previously obtained in the reaction of polytransesterification of succinic diester, citric triester and 1,4-butanediol. NMR, FTIR and DSC were used to characterize the materials obtained; wettability and surface free energy were assessed too. Moreover, biological tests, i.e., viability and metabolic activity of MG-63 osteoblast-like cells in contact with synthesized polymers were performed. Properties of obtained block copolymers were controlled by the composition of the polymerization mixture and by the composition of the macroinitiator. The copolymers contained active side hydroxyl groups derived from citrate units present in the polymer chain. During the polymerization of l-lactide in the presence of polyesters with butylene citrate units in the chain, obtained products of the reaction held a fraction of highly branched copolymers with ultrahigh molecular weight. The reason for this observed phenomenon was strong intermolecular transesterification directed to lactidyl side chains, formed as a result of chain growth on hydroxyl groups related to the quaternary carbons of the citrate units. Based on the physicochemical properties and results of biological tests it was found that the most promising materials for scaffolds formation were poly(l-lactide–co–glycolide)–block–poly(butylene succinate–co–butylene citrate)s, especially those copolymers containing more than 60 mol % of lactidyl units.
Collapse
|