1
|
Dicke AK, Pilatz A, Wyrwoll MJ, Punab M, Ruckert C, Nagirnaja L, Aston KI, Conrad DF, Di Persio S, Neuhaus N, Fietz D, Laan M, Stallmeyer B, Tüttelmann F. DDX3Y is likely the key spermatogenic factor in the AZFa region that contributes to human non-obstructive azoospermia. Commun Biol 2023; 6:350. [PMID: 36997603 PMCID: PMC10063662 DOI: 10.1038/s42003-023-04714-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Non-obstructive azoospermia, the absence of sperm in the ejaculate due to disturbed spermatogenesis, represents the most severe form of male infertility. De novo microdeletions of the Y-chromosomal AZFa region are one of few well-established genetic causes for NOA and are routinely analysed in the diagnostic workup of affected men. So far, it is unclear which of the three genes located in the AZFa chromosomal region is indispensible for germ cell maturation. Here we present four different likely pathogenic loss-of-function variants in the AZFa gene DDX3Y identified by analysing exome sequencing data of more than 1,600 infertile men. Three of the patients underwent testicular sperm extraction and revealed the typical AZFa testicular Sertoli cell-only phenotype. One of the variants was proven to be de novo. Consequently, DDX3Y represents the AZFa key spermatogenic factor and screening for variants in DDX3Y should be included in the diagnostic workflow.
Collapse
Affiliation(s)
- Ann-Kristin Dicke
- Institute of Reproductive Genetics, University of Münster, 48149, Münster, Germany
| | - Adrian Pilatz
- Clinic for Urology, Paediatric Urology and Andrology, Justus Liebig University Gießen, 35390, Gießen, Germany
| | - Margot J Wyrwoll
- Institute of Reproductive Genetics, University of Münster, 48149, Münster, Germany
| | - Margus Punab
- Andrology Centre, Tartu University Hospital, 50406, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
| | - Christian Ruckert
- Institute of Human Genetics, University of Münster, 48149, Münster, Germany
| | - Liina Nagirnaja
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Kenneth I Aston
- Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, 48149, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, 48149, Münster, Germany
| | - Daniela Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Gießen, 35392, Gießen, Germany
| | - Maris Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
| | - Birgit Stallmeyer
- Institute of Reproductive Genetics, University of Münster, 48149, Münster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, 48149, Münster, Germany.
| |
Collapse
|
2
|
Liu Y, Wang G, Zhang F, Dai L. An NGS-based approach to identify Y-chromosome variation in non-obstructive azoospermia. Andrologia 2021; 53:e14201. [PMID: 34350635 DOI: 10.1111/and.14201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022] Open
Abstract
Copy number variations (CNVs), including deletions and duplications on the Y chromosome, are known genetic factors in azoospermia. Therefore, it is important to identify novel pathogenic CNVs related to azoospermia. In this study, we compared CNVs detected by STS-PCR and NGS in 107 individuals with nonobstructive azoospermia (NOA). STS-PCR analysis revealed that 8.14% (9/107) of patients had AZF deletions. The highest percentage of deletions was located in the AZFc region, followed by AZFa and AZFb+c. Positive CNVs, including four duplications, six deletions and three complex CNVs, were detected using NGS methods in 12.15% (13/107) of NOA patients. Both the duplications and deletions detected in q11.223 were confirmed to increase the genetic risk for NOA. A comparison between the STS-PCR results and NGS methods revealed concordant CNV-positive results in 4 of 107 cases (3.74%). The discrepancies included 6 cases with CNVs identified by NGS but not detected by STS-PCR, and two cases were detected by STS-PCR but not by NGS. Notably, four duplications were not identified and three complex CNVs were detected as simple deletions using STS-PCR analysis. The NGS method provides comprehensive results in detecting Y chromosome-linked CNVs, including deletions and duplications, which might broaden our understanding of NOA.
Collapse
Affiliation(s)
- Yongjie Liu
- Reproductive Center, Yinchuan Maternity and Child Health Care Hospital, Yinchuan, China
| | - Guoping Wang
- Reproductive Center, Yinchuan Maternity and Child Health Care Hospital, Yinchuan, China
| | - Fan Zhang
- Reproductive Center, Yinchuan Maternity and Child Health Care Hospital, Yinchuan, China
| | - Liang Dai
- Reproductive Center, Yinchuan Maternity and Child Health Care Hospital, Yinchuan, China
| |
Collapse
|