1
|
Shen S, Hong T, Liu Z, Liu S, Ni H, Jiang Z, Yang Y, Zheng M. In vitro-simulated intestinal flora fermentation of Porphyra haitanensis polysaccharides obtained by different assisted extractions and their fermented products against HT-29 human colon cancer cells. Food Funct 2023; 14:10747-10758. [PMID: 37975749 DOI: 10.1039/d3fo04421a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Herein, we studied the in vitro-simulated intestinal flora fermentation of Porphyra haitanensis polysaccharides (PHPs) with microwave, ultrasonic, ultra-high pressure-assisted extraction and the protective effect of their fermented products against HT-29 human colon cancer cells. The results showed that PHPs were largely degraded at the 18 h stage of ascending colon fermentation, further greatly increasing the contents of reducing sugars and short-chain fatty acids (p < 0.05). Particularly, the PHPs subjected to ultra-high pressure-assisted extraction (UHP-PHP) showed the highest reducing sugar content of 1.68 ± 0.01 mg mL-1 and butyric acid content of 410.77 ± 7.99 mmol mL-1. Moreover, UHP-PHP showed a better effect in increasing the ratio of Bacteroidetes/Firmicutes and decreasing the abundance of Proteobacteria and Escherichia coli. PHPs could protect against HT-29 cells by increasing the ROS levels in a concentration-dependent manner, especially UHP-PHP fermented in a descending colon for 24 h. This was related to the up-regulated apoptosis-related genes (Bax and Bak), down-regulated protein expression of Bcl-2 and activation of the p-AKT protein, thereby promoting the apoptosis of HT-29 cells. Our results can facilitate the modification of PHPs and their practical application in the development of intestinal health improving products.
Collapse
Affiliation(s)
- Shiqi Shen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China.
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing, Xiamen, 361013, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China.
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing, Xiamen, 361013, China
| | - Shuji Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing, Xiamen, 361013, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China.
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
- Xiamen Ocean Vocational College, Xiamen 361021, Fujian, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China.
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Yuanfan Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China.
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China.
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing, Xiamen, 361013, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| |
Collapse
|
2
|
Lv Z, Liu R, Su K, Gu Y, Fang L, Fan Y, Gao J, Ruan X, Feng X. Acupuncture ameliorates breast cancer-related fatigue by regulating the gut microbiota-gut-brain axis. Front Endocrinol (Lausanne) 2022; 13:921119. [PMID: 36093113 PMCID: PMC9449876 DOI: 10.3389/fendo.2022.921119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer-related fatigue (CRF) is the most common side effect of chemotherapy for breast cancer (BC). Acupuncture treatment has an anti-fatigue effect and can regulate gut microbiota disturbance in fatigue patients. Related studies have shown that the gut microbiota-gut-brain axis is closely related to the occurrence of CRF. In this study, we first investigated the alterations of acupuncture on fatigue-like behavior, gut microbiota, gut inflammation and neuroinflammation response, gut barriers, HPA axis, and serum metabolomics in CRF mice after BC chemotherapy. Then, the correlation analysis of gut microbiota and other indicators was discussed. Our results showed that acupuncture treatment could exert an anti-fatigue effect and ameliorate the gut barrier, gut inflammation, neuroinflammation, and dysfunction of the HPA axis in CRF mice after chemotherapy for BC. 16S rRNA sequencing showed that acupuncture treatment could enhance the abundance of Candidatus Arthromitus, Lactobacillus, and Clostridia_UCG-014_unclassified and decrease the abundances of Escherichia-Shigella, Burkholderia-Caballeronia-Paraburkholderia, and Streptococcus. Serum metabolomics analysis showed that acupuncture treatment could regulate the differential metabolites N-methylnicotinamide, beta-glycerophosphoric acid, geranyl acetoacetate, serotonin and phenylalanine, tyrosine and tryptophan biosynthesis, taurine and hypotaurine, and beta-alanine metabolic pathways. Correlation analysis indicated that there are certain correlations between gut microbiota and gut inflammation, neuroinflammation, gut barrier, HPA axis function and serum metabolites. In conclusion, our findings revealed that the anti-fatigue mechanism of acupuncture treatment may be closely related to the gut microbiota-gut-brain axis. This study also provided a new reference for basic and clinical research on CRF after breast cancer chemotherapy.
Collapse
Affiliation(s)
- Zhuan Lv
- Department of Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruidong Liu
- Department of Breast surgery, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Kaiqi Su
- Department of Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yiming Gu
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lu Fang
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yongfu Fan
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Department of Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaodi Ruan
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaodong Feng
- Department of Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Xiaodong Feng,
| |
Collapse
|