1
|
Rodríguez-Prieto Á, Mateos-White I, Aníbal-Martínez M, Navarro-González C, Gil-Sanz C, Domínguez-Canterla Y, González-Manteiga A, Del Buey Furió V, López-Bendito G, Fazzari P. Nrg1 intracellular signaling regulates the development of interhemispheric callosal axons in mice. Life Sci Alliance 2024; 7:e202302250. [PMID: 38918041 PMCID: PMC11200272 DOI: 10.26508/lsa.202302250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Schizophrenia is associated with altered cortical circuitry. Although the schizophrenia risk gene NRG1 is known to affect the wiring of inhibitory interneurons, its role in excitatory neurons and axonal development is unclear. Here, we investigated the role of Nrg1 in the development of the corpus callosum, the major interhemispheric connection formed by cortical excitatory neurons. We found that deletion of Nrg1 impaired callosal axon development in vivo. Experiments in vitro and in vivo demonstrated that Nrg1 is cell-autonomously required for axonal outgrowth and that intracellular signaling of Nrg1 is sufficient to promote axonal development in cortical neurons and specifically in callosal axons. Furthermore, our data suggest that Nrg1 signaling regulates the expression of Growth Associated Protein 43, a key regulator of axonal growth. In conclusion, our study demonstrates that NRG1 is involved in the formation of interhemispheric callosal connections and provides a novel perspective on the relevance of NRG1 in excitatory neurons and in the etiology of schizophrenia.
Collapse
Affiliation(s)
- Ángela Rodríguez-Prieto
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe, Valencia, Spain
| | - Isabel Mateos-White
- Lab of Neural Development, BIOTECMED Institute, Universidad de Valencia, Valencia, Spain
| | - Mar Aníbal-Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Carmen Navarro-González
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe, Valencia, Spain
- Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Cristina Gil-Sanz
- Lab of Neural Development, BIOTECMED Institute, Universidad de Valencia, Valencia, Spain
| | - Yaiza Domínguez-Canterla
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe, Valencia, Spain
| | - Ana González-Manteiga
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe, Valencia, Spain
| | - Verónica Del Buey Furió
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe, Valencia, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Pietro Fazzari
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe, Valencia, Spain
| |
Collapse
|
2
|
Fan J, Zhong L, Yan F, Li X, Li L, Zhao H, Han Z, Wang R, Tao Z, Zheng Y, Ma Q, Luo Y. Alteration of N6-methyladenosine modification profiles in the neutrophilic RNAs following ischemic stroke. Neuroscience 2024; 553:56-73. [PMID: 38945353 DOI: 10.1016/j.neuroscience.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND N6-methyladenosine (m6A) is one of the most extensive RNA methylation modifications in eukaryotes and participates in the pathogenesis of numerous diseases including ischemic stroke. Peripheral blood neutrophils are forerunners after ischemic brain injury and exert crucial functions. This study aims to explore the transcriptional profiles of m6A modification in neutrophils of patients with ischemic stroke. RESULTS We found that the expression levels of m6A regulators FTO and YTHDC1 were notably decreased in the neutrophils following ischemic stroke, and FTO expression was negatively correlated with neutrophil counts and neutrophil-to-lymphocyte ratio (NLR). The m6A mRNA&lncRNA epigenetic transcriptome microarray identified 416 significantly upregulated and 500 significantly downregulated mRNA peaks in neutrophils of ischemic stroke patients. Moreover, 48 mRNAs and 18 lncRNAs were hypermethylated, and 115 mRNAs and 29 lncRNAs were hypomethylated after cerebral ischemia. Gene ontology (GO) analysis identified that these m6A-modified mRNAs were primarily enriched in calcium ion transport, long-term synaptic potentiation, and base-excision repair. The signaling pathways involved were EGFR tyrosine kinase inhibitor resistance, ErbB, and base excision repair signaling pathway. MeRIP-qPCR validation results showed that NRG1 and GDPD1 were significantly hypermethylated, and LIG1, CHRND, lncRNA RP11-442J17.2, and lncRNA RP11-600P1.2 were significantly hypomethylated after cerebral ischemia. Moreover, the expression levels of major m6A regulators Mettl3, Fto, Ythdf1, and Ythdf3 were obviously declined in the brain and leukocytes of post-stroke mouse models. CONCLUSION This study explored the RNA m6A methylation pattern in the neutrophils of ischemic stroke patients, indicating that it is an intervention target of epigenetic regulation in ischemic stroke.
Collapse
Affiliation(s)
- Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China.
| | - Liyuan Zhong
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Feng Yan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| | - Xue Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Lingzhi Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| | - Ziping Han
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| | - Zhen Tao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| | - Yangmin Zheng
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| | - Qingfeng Ma
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
3
|
Deng A, Wang S, Qin J, Yang P, Shen S, Zhou H, Chen X. ErbB4 processing is involved in OGD/R induced neuron injury. J Stroke Cerebrovasc Dis 2023; 32:107373. [PMID: 37734179 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE Our previous study found that ErbB4 gene expression was changed after oxygen-glucose deprivation/reperfusion (OGD/R). However, the exact role and mechanism of ErbB4 in brain ischemia are largely unknown. In this study, we explored the protective effects of ErbB4 and its possible mechanism after OGD/R. METHODS Cerebral ischemia/reperfusion (I/R) injury model was established in vitro and in vivo. Cell viability, apoptosis, and ROS production were measured by MTT, TUNEL, and fluorescent probe 2', 7'-dichlorofluorescein diacetate (DCFH-DA). Infarct size was evaluated by TTC. We performed bioinformatics analyses to screen for novel key genes involved in ErbB4 changes. RNA-Seq was used to transcriptome analysis. RNA and protein expression were detected by quantitative RT‒PCR and western bloting. RESULTS The expression of 80-kDa ErbB4 decreased after cerebral I/R injury in vitro and in vivo. Co-expression network analysis revealed that ErbB4 expression was correlated with the changes in Adrb1, Adrb2, Ldlr, and Dab2. Quantitative RT‒PCR revealed that the mRNA expression levels of Adrb1, Adrb2, and Dab2 were upregulated, and that of Ldlr was decreased after OGD/R. Activation of ErbB4 expression by neuregulin 1 (NRG1) significantly promoted cell survival, attenuated hippocampal apoptosis, and decreased ROS production after OGD/R. Furthermore, the elimination of ErbB4 using a specific siRNA reversed these beneficial effects. CONCLUSION Our data revealed the neuroprotective effects of ErbB4 against OGD/R injury, and the action could be related to changes in the ErbB4 membrane-associated fragment and the expression of Adrb1, Adrb2, Ldlr, and Dab2.
Collapse
Affiliation(s)
- Aiqing Deng
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Shouyan Wang
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Jianxin Qin
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Panpan Yang
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Shaoze Shen
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Hongzhi Zhou
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xia Chen
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu 226001, People's Republic of China.
| |
Collapse
|
4
|
Ding CY, Ding YT, Ji H, Wang YY, Zhang X, Yin DM. Genetic labeling reveals spatial and cellular expression pattern of neuregulin 1 in mouse brain. Cell Biosci 2023; 13:79. [PMID: 37147705 PMCID: PMC10161477 DOI: 10.1186/s13578-023-01032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Where the gene is expressed determines the function of the gene. Neuregulin 1 (Nrg1) encodes a tropic factor and is genetically linked with several neuropsychiatry diseases such as schizophrenia, bipolar disorder and depression. Nrg1 has broad functions ranging from regulating neurodevelopment to neurotransmission in the nervous system. However, the expression pattern of Nrg1 at the cellular and circuit levels in rodent brain is not full addressed. METHODS Here we used CRISPR/Cas9 techniques to generate a knockin mouse line (Nrg1Cre/+) that expresses a P2A-Cre cassette right before the stop codon of Nrg1 gene. Since Cre recombinase and Nrg1 are expressed in the same types of cells in Nrg1Cre/+ mice, the Nrg1 expression pattern can be revealed through the Cre-reporting mice or adeno-associated virus (AAV) that express fluorescent proteins in a Cre-dependent way. Using unbiased stereology and fluorescence imaging, the cellular expression pattern of Nrg1 and axon projections of Nrg1-positive neurons were investigated. RESULTS In the olfactory bulb (OB), Nrg1 is expressed in GABAergic interneurons including periglomerular (PG) and granule cells. In the cerebral cortex, Nrg1 is mainly expressed in the pyramidal neurons of superficial layers that mediate intercortical communications. In the striatum, Nrg1 is highly expressed in the Drd1-positive medium spiny neurons (MSNs) in the shell of nucleus accumbens (NAc) that project to substantia nigra pars reticulata (SNr). In the hippocampus, Nrg1 is mainly expressed in granule neurons in the dentate gyrus and pyramidal neurons in the subiculum. The Nrg1-expressing neurons in the subiculum project to retrosplenial granular cortex (RSG) and mammillary nucleus (MM). Nrg1 is highly expressed in the median eminence (ME) of hypothalamus and Purkinje cells in the cerebellum. CONCLUSIONS Nrg1 is broadly expressed in mouse brain, mainly in neurons, but has unique expression patterns in different brain regions.
Collapse
Affiliation(s)
- Chen-Yun Ding
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
- Center of Implant Dentistry, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, 110002, China
| | - Yan-Ting Ding
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Haifeng Ji
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
- Shanghai Changning Mental Health Center, Affiliated to East China Normal University, Shanghai, 200335, China
| | - Yao-Yi Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, 110002, China.
- Laboratory Animal Centre, China Medical University, Shenyang, 110001, China.
| | - Dong-Min Yin
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China.
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, 200062, China.
| |
Collapse
|
5
|
Neuregulin-1/PI3K signaling effects on oligodendrocyte proliferation, remyelination and behaviors deficit in a male mouse model of ischemic stroke. Exp Neurol 2023; 362:114323. [PMID: 36690057 DOI: 10.1016/j.expneurol.2023.114323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
In this study, we investigated the effect of neuregulin-1 (NRG1) on demyelination and neurological function in an ischemic stroke model, and further explored its neuroprotective mechanisms. Adult male ICR mice underwent photothrombotic ischemia surgery and were injected with NRG1 beginning 30 min after ischemia. Cylinder and grid walking tests were performed to evaluate the forepaw function. In addition, the effect of NRG1 on neuronal damage/death (Cresyl violet, CV), neuronal nuclei (NeuN), nestin, doublecortin (DCX), myelin basic protein (MBP), non-phosphorylated neurofilaments (SMI-32), adenomatous polyposis coli (APC), erythroblastic leukemia viral oncogene homolog (ErbB) 2, 4 and serine-threonine protein kinase (Akt) in cortex were evaluated using immunohistochemistry, immunofluorescence and western blot. The cylinder and grid walking tests exposed that treatment of NRG1 observably regained the forepaw function. NRG1 treatment reduced cerebral infarction, restored forepaw function, promoted proliferation and differentiation of neuron and increased oligodendrogliogenesis. The neuroprotective effect of NRG1 is involved in its activation of PI3K/Akt signaling pathway via ErbB2, as shown by the suppression of the effect of NRG1 by the PI3K inhibitor LY294002. Our results demonstrate that NRG1 is effective in ameliorating the both acute phase neuroprotection and long-term neurological functions via resumption of neuronal proliferation and differentiation and oligodendrogliogenesis in a male mouse model of ischemic stroke.
Collapse
|
6
|
Tran NT, Muccini AM, Hale N, Tolcos M, Snow RJ, Walker DW, Ellery SJ. Creatine in the fetal brain: A regional investigation of acute global hypoxia and creatine supplementation in a translational fetal sheep model. Front Cell Neurosci 2023; 17:1154772. [PMID: 37066075 PMCID: PMC10097948 DOI: 10.3389/fncel.2023.1154772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
Background Creatine supplementation during pregnancy is a promising prophylactic treatment for perinatal hypoxic brain injury. Previously, in near-term sheep we have shown that fetal creatine supplementation reduces cerebral metabolic and oxidative stress induced by acute global hypoxia. This study investigated the effects of acute hypoxia with or without fetal creatine supplementation on neuropathology in multiple brain regions. Methods Near-term fetal sheep were administered continuous intravenous infusion of either creatine (6 mg kg-1 h-1) or isovolumetric saline from 122 to 134 days gestational age (dGA; term is approx. 145 dGA). At 131 dGA, global hypoxia was induced by a 10 min umbilical cord occlusion (UCO). Fetuses were then recovered for 72 h at which time (134 dGA) cerebral tissue was collected for either RT-qPCR or immunohistochemistry analyses. Results UCO resulted in mild injury to the cortical gray matter, thalamus and hippocampus, with increased cell death and astrogliosis and downregulation of genes involved in regulating injury responses, vasculature development and mitochondrial integrity. Creatine supplementation reduced astrogliosis within the corpus callosum but did not ameliorate any other gene expression or histopathological changes induced by hypoxia. Of importance, effects of creatine supplementation on gene expression irrespective of hypoxia, including increased expression of anti-apoptotic (BCL-2) and pro-inflammatory (e.g., MPO, TNFa, IL-6, IL-1β) genes, particularly in the gray matter, hippocampus, and striatum were identified. Creatine treatment also effected oligodendrocyte maturation and myelination in white matter regions. Conclusion While supplementation did not rescue mild neuropathology caused by UCO, creatine did result in gene expression changes that may influence in utero cerebral development.
Collapse
Affiliation(s)
- Nhi T. Tran
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- *Correspondence: Nhi T. Tran,
| | - Anna M. Muccini
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Nadia Hale
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Rod J. Snow
- Institute for Physical Activity and Nutrition, Deakin University, Melbourne, VIC, Australia
| | - David W. Walker
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stacey J. Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
7
|
González-Manteiga A, Navarro-González C, Sebestyén VE, Saborit-Torres JM, Talhada D, Vayá MDLI, Ruscher K, Fazzari P. A Novel In Vivo Model for Multiplexed Analysis of Callosal Connections upon Cortical Damage. Int J Mol Sci 2022; 23:ijms23158224. [PMID: 35897791 PMCID: PMC9368090 DOI: 10.3390/ijms23158224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 12/04/2022] Open
Abstract
Brain damage is the major cause of permanent disability and it is particularly relevant in the elderly. While most studies focused on the immediate phase of neuronal loss upon injury, much less is known about the process of axonal regeneration after damage. The development of new refined preclinical models to investigate neuronal regeneration and the recovery of brain tissue upon injury is a major unmet challenge. Here, we present a novel experimental paradigm in mice that entails the (i) tracing of cortico-callosal connections, (ii) a mechanical lesion of the motor cortex, (iii) the stereological and histological analysis of the damaged tissue, and (iv) the functional characterization of motor deficits. By combining conventional microscopy with semi-automated 3D reconstruction, this approach allows the analysis of fine subcellular structures, such as axonal terminals, with the tridimensional overview of the connectivity and tissue integrity around the lesioned area. Since this 3D reconstruction is performed in serial sections, multiple labeling can be performed by combining diverse histological markers. We provide an example of how this methodology can be used to study cellular interactions. Namely, we show the correlation between active microglial cells and the perineuronal nets that envelop parvalbumin interneurons. In conclusion, this novel experimental paradigm will contribute to a better understanding of the molecular and cellular interactions underpinning the process of cortical regeneration upon brain damage.
Collapse
Affiliation(s)
- Ana González-Manteiga
- Laboratory of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (A.G.-M.); (C.N.-G.); (V.E.S.)
| | - Carmen Navarro-González
- Laboratory of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (A.G.-M.); (C.N.-G.); (V.E.S.)
| | - Valentina Evita Sebestyén
- Laboratory of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (A.G.-M.); (C.N.-G.); (V.E.S.)
| | - Jose Manuel Saborit-Torres
- Laboratory of Medical Imaging, CIPF Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (J.M.S.-T.); (M.d.l.I.V.)
| | - Daniela Talhada
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, 2184 Lund, Sweden; (D.T.); (K.R.)
| | - María de la Iglesia Vayá
- Laboratory of Medical Imaging, CIPF Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (J.M.S.-T.); (M.d.l.I.V.)
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, 2184 Lund, Sweden; (D.T.); (K.R.)
- LUBIN Lab-Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Pietro Fazzari
- Laboratory of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (A.G.-M.); (C.N.-G.); (V.E.S.)
- Correspondence:
| |
Collapse
|
8
|
Martínez-Rubio D, Rodríguez-Prieto Á, Sancho P, Navarro-González C, Gorría-Redondo N, Miquel-Leal J, Marco-Marín C, Jenkins A, Soriano-Navarro M, Hernández A, Pérez-Dueñas B, Fazzari P, AƗguilera-Albesa S, Espinós C. Protein misfolding and clearance in the pathogenesis of a new infantile onset ataxia caused by mutations in PRDX3. Hum Mol Genet 2022; 31:3897-3913. [PMID: 35766882 DOI: 10.1093/hmg/ddac146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxiredoxin 3 (PRDX3) encodes a mitochondrial antioxidant protein which is essential for the control of reactive oxidative species (ROS) homeostasis. So far, PRDX3 mutations are involved in mild-to-moderate progressive juvenile onset cerebellar ataxia. We aimed to unravel the molecular bases underlying the disease in an infant suffering from cerebellar ataxia that started at 19 months old and presented severe cerebellar atrophy and peripheral neuropathy early in the course of disease. By whole exome sequencing, we identified a novel homozygous mutation, PRDX3 p.D163E, which impaired the mitochondrial ROS defense system. In mouse primary cortical neurons, the exogenous expression of PRDX3 p.D163E was reduced and triggered alterations in neurite morphology and in mitochondria. Mitochondrial computational parameters showed that p.D163E led to serious mitochondrial alterations. In transfected HeLa cells expressing the mutation, mitochondria accumulation was detected by correlative light electron microscopy (CLEM). Mitochondrial morphology showed severe changes, including extremely damaged outer and inner membranes with a notable cristae disorganization. Moreover, spherical structures compatible with lipid droplets were identified, which can be associated with a generalized response to stress and can be involved in the removal of unfolded proteins. In the patient's fibroblasts, PRDX3 expression was nearly absent. The biochemical analysis suggested that the mutation p.D163E would result in an unstable structure tending to form aggregates that trigger unfolded protein responses via mitochondria and endoplasmic reticulum. Altogether, our findings broaden the clinical spectrum of the recently described PRDX3-associated neurodegeneration and provide new insight into the pathological mechanisms underlying this new form of cerebellar ataxia.
Collapse
Affiliation(s)
- Dolores Martínez-Rubio
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain.,Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 Valencia, Spain
| | - Ángela Rodríguez-Prieto
- Cortical Circuits in Health and Disease Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Paula Sancho
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Carmen Navarro-González
- Cortical Circuits in Health and Disease Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Nerea Gorría-Redondo
- Pediatric Neurology Unit, Department of Pediatrics, Complejo Hospitalario de Navarra, Navarrabiomed, 31008 Pamplona, Spain
| | - Javier Miquel-Leal
- Cortical Circuits in Health and Disease Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Clara Marco-Marín
- Structural Enzymopathology Unit, Instituto de Biomedicina de Valencia (IBV), Consejo Superior de Investigaciones Científicas (CSIC), CIBER de Enfermedades Raras (CIBERER-ISCIII), 46010 Valencia, Spain
| | - Alison Jenkins
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Mario Soriano-Navarro
- Electron Microscopy Core Facility, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Alberto Hernández
- Service of Advanced Light Microscopy, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Belén Pérez-Dueñas
- Department of Pediatric Neurology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, 08035 Barcelona, Spain
| | - Pietro Fazzari
- Cortical Circuits in Health and Disease Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Sergio AƗguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Complejo Hospitalario de Navarra, Navarrabiomed, 31008 Pamplona, Spain
| | - Carmen Espinós
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain.,Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 Valencia, Spain.,Biotechnology Department, Faculty of Veterinary and Experimental Sciences, Universidad Católica de Valencia, 46001 Valencia, Spain
| |
Collapse
|
9
|
Ahmad T, Vullhorst D, Chaudhuri R, Guardia CM, Chaudhary N, Karavanova I, Bonifacino JS, Buonanno A. Transcytosis and trans-synaptic retention by postsynaptic ErbB4 underlie axonal accumulation of NRG3. J Cell Biol 2022; 221:213222. [PMID: 35579602 PMCID: PMC9118086 DOI: 10.1083/jcb.202110167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 01/07/2023] Open
Abstract
Neuregulins (NRGs) are EGF-like ligands associated with cognitive disorders. Unprocessed proNRG3 is cleaved by BACE1 to generate the mature membrane-bound NRG3 ligand, but the subcellular site of proNRG3 cleavage, mechanisms underlying its transport into axons, and presynaptic accumulation remain unknown. Using an optogenetic proNRG3 cleavage reporter (LA143-NRG3), we investigate the spatial-temporal dynamics of NRG3 processing and sorting in neurons. In dark conditions, unprocessed LA143-NRG3 is retained in the trans-Golgi network but, upon photoactivation, is cleaved by BACE1 and released from the TGN. Mature NRG3 then emerges on the somatodendritic plasma membrane from where it is re-endocytosed and anterogradely transported on Rab4+ vesicles into axons via transcytosis. By contrast, the BACE1 substrate APP is sorted into axons on Rab11+ vesicles. Lastly, by a mechanism we denote "trans-synaptic retention," NRG3 accumulates at presynaptic terminals by stable interaction with its receptor ErbB4 on postsynaptic GABAergic interneurons. We propose that trans-synaptic retention may account for polarized expression of other neuronal transmembrane ligands and receptors.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD,Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Detlef Vullhorst
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Rituparna Chaudhuri
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre, Haryana, India
| | - Carlos M. Guardia
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Nisha Chaudhary
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Irina Karavanova
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Juan S. Bonifacino
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD,Correspondence to Andres Buonanno:
| |
Collapse
|
10
|
Rosas D, Raez LE, Russo A, Rolfo C. Neuregulin 1 Gene ( NRG1). A Potentially New Targetable Alteration for the Treatment of Lung Cancer. Cancers (Basel) 2021; 13:cancers13205038. [PMID: 34680187 PMCID: PMC8534274 DOI: 10.3390/cancers13205038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Treatment in oncology has and will keep evolving into an agnostic approach where therapies are guided more towards the identification and targeting of genetic abnormalities and less by organ of origin of the cancer, as has been done for decades. With every genetic abnormality being identified as a target, the pharmaceutical development of medications targeting these genes has grown, leading to better survival rates, quality of life and a bigger interest in finding new targets. Lung cancer is one of the best examples where targetable genetic abnormalities have led to substantial survival differences compared to patients undergoing empirical conventional chemotherapy. Translocations in the neuregulin 1 gene (NRG1) are one of many gene fusions that are becoming clinically significant, and it has the potential to become a targetable gene with ongoing clinical trials already in Europe and the US. This review aims to portray the importance and latest developments regarding this new fusion in lung cancer treatment. Abstract Oncogenic gene fusions are hybrid genes that result from structural DNA rearrangements, leading to unregulated cell proliferation by different mechanisms in a wide variety of cancer. This has led to the development of directed therapies to antagonize a variety of mechanisms that lead to cell growth or proliferation. Multiple oncogene fusions are currently targeted in lung cancer treatment, such as those involving ALK, RET, NTRK and ROS1 among many others. Neuregulin (NRG) gene fusion has been described in the development of normal tissue as well as in a variety of diseases, such as schizophrenia, Hirschsprung’s disease, atrial fibrillation and, most recently, the development of various types of solid tumors, such as renal, gastric, pancreatic, breast, colorectal and, more recently, lung cancer. The mechanism for this is that the NRG1 chimeric ligand leads to aberrant activation of ERBB2 signaling via PI3K-AKT and MAPK cellular cascades, leading to cell division and proliferation. Details regarding the incidence of these gene rearrangements are lacking. Limited case reports and case series have evaluated their clinicopathologic features and prognostic significance in the lung cancer population. Taking this into account, NRG1 could become a targetable alteration in selected patients. This review highlights how the knowledge of new molecular mechanisms of NRG1 fusion may help in gaining new insights into the molecular status of lung cancer patients and unveil a novel targetable molecular marker.
Collapse
Affiliation(s)
- Daniel Rosas
- The Internal Medicine Department, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Correspondence:
| | - Luis E. Raez
- Thoracic Oncology Program, Memorial Cancer Institute/Memorial Health Care System, Florida International University (FIU), Miami, FL 33021, USA;
| | | | - Christian Rolfo
- Clinical Research and Center for Thoracic Oncology, The Tisch Cancer Institute, Mount Sinai Health System & Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
11
|
Wang P, Wang B, Zhang Z, Wang Z. Identification of inflammation-related DNA methylation biomarkers in periodontitis patients based on weighted co-expression analysis. Aging (Albany NY) 2021; 13:19678-19695. [PMID: 34347624 PMCID: PMC8386560 DOI: 10.18632/aging.203378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/04/2021] [Indexed: 04/18/2023]
Abstract
Evidence from past research has shown that DNA methylation plays a key role in the pathogenesis of periodontitis, regulating gene expression levels and thereby affecting the occurrence of various diseases. Three sample sets of methylation data and gene expression data were downloaded from Gene Expression Omnibus (GEO) database. A diagnostic classifier is established based on gene expression data and CpG methylation data. Abnormal expression of immune-related pathways and methyltransferase-related genes in patients with periodontitis was detected. A total of 8,029 differentially expressed CpG (DMP) was annotated to the promoter region of 4,940 genes, of which 295 immune genes were significantly enriched. The CpG sites of 23 differentially co-expressed immune gene promoter regions were identified, and 13 CpG were generally hypermethylated in healthy group samples, while some were methylated in most patients. Five CpGs were screened as robust periodontitis biomarkers. The accuracy in the training data set, the two external verification data sets, and in the transcriptome was 95.5%, 80% and 78.3%, and 82.6%, respectively. This study provided new features for the diagnosis of periodontitis, and contributed to the personalized treatment of periodontitis.
Collapse
Affiliation(s)
- Pengcheng Wang
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Bingbing Wang
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory for Cancer Invasion and Metastasis, Department of Oncology, Capital Medical University, Beijing 100069, China
| | - Zheng Zhang
- Department of Periodontology, Tianjin Stomatological Hospital and Tianjin Key Laboratory of Oral Function Reconstruction, Hospital of Stomatology, Nankai University, Tianjin 300041, China
| | - Zuomin Wang
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
12
|
Leu T, Fandrey J, Schreiber T. (H)IF applicable: promotion of neurogenesis by induced HIF-2 signalling after ischaemia. Pflugers Arch 2021; 473:1287-1299. [PMID: 34251509 PMCID: PMC8302505 DOI: 10.1007/s00424-021-02600-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
HIF-2 represents a tissue-specific isoform of the hypoxia-inducible factors (HIFs) which regulate oxygen homeostasis in the cell. In acute oxygen deficiency, HIF transcription factors ensure the timely restoration of adequate oxygen supply. Particularly in medical conditions such as stroke, which have a high mortality risk due to ischaemic brain damage, rapid recovery of oxygen supply is of extraordinary importance. Nevertheless, the endogenous mechanisms are often not sufficient to respond to severe hypoxic stress with restoring oxygenation and fail to protect the tissue. Herein, we analysed murine neurospheres without functioning HIF-2α and found that special importance in the differentiation of neurons can be attributed to HIF-2 in the brain. Other processes, such as cell migration and signal transduction of different signalling pathways, appear to be mediated to some extent via HIF-2 and illustrate the function of HIF-2 in brain remodelling. Without hypoxic stress, HIF-2 in the brain presumably focuses on the fine-tuning of the neural network. However, a therapeutically increase of HIF-2 has the potential to regenerate or replace destroyed brain tissue and help minimize the consequences of an ischaemic stroke.
Collapse
Affiliation(s)
- Tristan Leu
- Institute of Physiology, University Duisburg-Essen, 45147, Essen, Germany
| | - Joachim Fandrey
- Institute of Physiology, University Duisburg-Essen, 45147, Essen, Germany.
| | - Timm Schreiber
- Institute of Physiology, University Duisburg-Essen, 45147, Essen, Germany
- Institute of Physiology, Pathophysiology and Toxicology and Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, 58453, Witten, Germany
| |
Collapse
|
13
|
Navarro-Gonzalez C, Carceller H, Benito Vicente M, Serra I, Navarrete M, Domínguez-Canterla Y, Rodríguez-Prieto Á, González-Manteiga A, Fazzari P. Nrg1 haploinsufficiency alters inhibitory cortical circuits. Neurobiol Dis 2021; 157:105442. [PMID: 34246770 DOI: 10.1016/j.nbd.2021.105442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 05/19/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022] Open
Abstract
Neuregulin 1 (NRG1) and its receptor ERBB4 are schizophrenia (SZ) risk genes that control the development of both excitatory and inhibitory cortical circuits. Most studies focused on the characterization ErbB4 deficient mice. However, ErbB4 deletion concurrently perturbs the signaling of Nrg1 and Neuregulin 3 (Nrg3), another ligand expressed in the cortex. In addition, NRG1 polymorphisms linked to SZ locate mainly in non-coding regions and they may partially reduce Nrg1 expression. Here, to study the relevance of Nrg1 partial loss-of-function in cortical circuits we characterized a recently developed haploinsufficient mouse model of Nrg1 (Nrg1tm1Lex). These mice display SZ-like behavioral deficits. The cellular and molecular underpinnings of the behavioral deficits in Nrg1tm1Lex mice remain to be established. With multiple approaches including Magnetic Resonance Spectroscopy (MRS), electrophysiology, quantitative imaging and molecular analysis we found that Nrg1 haploinsufficiency impairs the inhibitory cortical circuits. We observed changes in the expression of molecules involved in GABAergic neurotransmission, decreased density of Vglut1 excitatory buttons onto Parvalbumin interneurons and decreased frequency of spontaneous inhibitory postsynaptic currents. Moreover, we found a decreased number of Parvalbumin positive interneurons in the cortex and altered expression of Calretinin. Interestingly, we failed to detect other alterations in excitatory neurons that were previously reported in ErbB4 null mice suggesting that the Nrg1 haploinsufficiency does not entirely phenocopies ErbB4 deletions. Altogether, this study suggests that Nrg1 haploinsufficiency primarily affects the cortical inhibitory circuits in the cortex and provides new insights into the structural and molecular synaptic impairment caused by NRG1 hypofunction in a preclinical model of SZ.
Collapse
Affiliation(s)
- Carmen Navarro-Gonzalez
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Héctor Carceller
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Marina Benito Vicente
- Laboratorio Resonancia Magnética de Investigación, Hospital Nacional de Parapléjicos, Toledo, Spain.
| | - Irene Serra
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto Cajal, Madrid, Spain.
| | - Marta Navarrete
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto Cajal, Madrid, Spain.
| | - Yaiza Domínguez-Canterla
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Ángela Rodríguez-Prieto
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Ana González-Manteiga
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Pietro Fazzari
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe Felipe, Valencia, Spain; Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molecular Severo Ochoa, Madrid, Spain.
| |
Collapse
|
14
|
Pathophysiology and Therapeutic Potential of NADPH Oxidases in Ischemic Stroke-Induced Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6631805. [PMID: 33777315 PMCID: PMC7969100 DOI: 10.1155/2021/6631805] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/23/2022]
Abstract
Stroke is a leading cause of death and disability in humans. The excessive production of reactive oxygen species (ROS) is an important contributor to oxidative stress and secondary brain damage after stroke. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, an enzyme complex consisting of membrane subunits and cytoplasmic subunits, regulates neuronal maturation and cerebrovascular homeostasis. However, NADPH oxidase overproduction contributes to neurotoxicity and cerebrovascular disease. NADPH oxidase has been implicated as the principal source of ROS in the brain, and numerous studies have shown that the knockout of NADPH exerts a protective effect in the model of ischemic stroke. In this review, we summarize the mechanism of activation of the NADPH oxidase family members, the pathophysiological effects of NADPH oxidase isoforms in ischemic stroke, and the studies of NADPH oxidase inhibitors to explore potential clinical applications.
Collapse
|
15
|
Increased Levels of Serum Neuregulin 1 Associated with Cognitive Impairment in Vascular Dementia. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6683747. [PMID: 33274218 PMCID: PMC7676920 DOI: 10.1155/2020/6683747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022]
Abstract
Objective Neuregulin 1 (NRG 1) is a member of the epidermal growth factor (EGF) family and is believed to play an important role in neuroplasticity. However, the relationship between NRG 1 and vascular dementia (VaD) is poorly understood. The purpose of this study is to explore the correlation between neuregulin 1 and VaD. Patients and Methods. From October 2018 to September 2020, 93 VaD patients and 79 control populations who attended Liaocheng People's Hospital were included in the study. Baseline characteristics including age, gender, years of education, HDL, LDL, FBG, SBP, and DBP are collected. At the same time, peripheral blood was collected, and the concentration of serum NRG 1 was detected by enzyme-linked immunosorbent assay (ELISA). All research subjects received professional cognitive function assessment. Results A total of 93 VaD patients and 79 controls were enrolled. There was no significant difference in age, gender, years of education, HDL, LDL, FBG, SBP, and DBP between the two groups (p > 0.05). However, compared with the control group, VaD patients have lower MoCA and higher serum NRG 1 levels, and the difference is statistically significant (p < 0.001). The correlation analysis of MoCA and baseline characteristics showed that the MoCA score in VaD was significantly negatively correlated with serum NRG 1 (r = −0.374, p = 0.036). The results of multivariate regression showed that the MoCA score of VaD patients was only associated with NRG 1 (β = 0.258, p = 0.012). Conclusions The concentration of serum NRG 1 in VaD patients is significantly increased, which may be an independent risk factor for cognitive impairment in VaD patients.
Collapse
|