1
|
Wang Y, Yang Z, Wu X, Quan W, Chen Q, Wang A. UiO-66 with Both Brønsted and Lewis Acid Sites for Catalytic Synthesis of Biodiesel. Molecules 2024; 29:4195. [PMID: 39275043 PMCID: PMC11397317 DOI: 10.3390/molecules29174195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
In the present study, an acid catalyst (UiO-66-SO3H) with Brønsted and Lewis acid sites was synthesised for the preparation of highly efficient biodiesel from oleic acid and methanol using chlorosulphonic acid sulfonated metal-organic frameworks (UiO-66) prepared with acetic acid as a moderator. The prepared catalysts were characterised using XRD, SEM, FT-IR and BET. The catalytic efficiency of the sulfonated catalysts was significantly improved and successful sulfonation was demonstrated by characterisation techniques. Biodiesel was synthesised by the one-pot method and an 85.0% biodiesel yield was achieved under optimum conditions of the reaction. The esterification reaction was determined to be consistent with a proposed primary reaction and the kinetics of the reaction was investigated. A reusability study of the catalyst (UiO-66-SO3H) was also carried out with good reproducibility. In conclusion, the present study provides some ideas for the synthesis of catalysts with high catalytic activity for the application in the catalytic preparation of biodiesel.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China
| | - Zhimin Yang
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China
| | - Xichang Wu
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China
| | - Wenxuan Quan
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China
| | - Qi Chen
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Anping Wang
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
2
|
Jumina J, Kurniawan YS, Lubis AB, Larasati EI, Purwono B, Triono S. Utilization of vanillin to prepare sulfated Calix[4]resorcinarene as efficient organocatalyst for biodiesel production based on methylation of palmitic acid and oleic acid. Heliyon 2023; 9:e16100. [PMID: 37251819 PMCID: PMC10208922 DOI: 10.1016/j.heliyon.2023.e16100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
Recently, biodiesel production from palm oils has been thoroughly investigated to substitute crude oil due to its scarcity. However, the biodiesel production process is time-consuming due to its slow kinetics; thus, concentrated sulfuric acid has been used to fasten the reaction process in some industries. Unfortunately, sulfuric acid is a toxic, corrosive, and non-environmentally friendly catalyst. In this study, we prepared sulfated Calix[4]resorcinarene derived from vanillin as an efficient organocatalyst to replace sulfuric acid. The catalytic activity of sulfated Calix[4]resorcinarenes was evaluated through the methylation of palmitic acid and oleic acid as model compounds due to their abundant amounts in palm oil. The Calix[4]resorcinarene and sulfated Calix[4]resorcinarenes have been obtained through a one-pot reaction in 71.8-98.3% yield. Their chemical structures were confirmed by using FTIR, NMR and HRMS spectrometry analyses. The results showed that the sulfated Calix[4]resorcinarene exhibited high catalytic activity for methyl palmitate and methyl oleate productions in 94.8 ± 1.8 and 97.3 ± 2.1% yield, respectively, which was comparable to sulfuric acid (96.3 ± 1.8 and 95.9 ± 2.5%). The optimum condition was achieved by using 0.020 wt equivalent of organocatalyst for 6 h reaction process at 338 K. The methylation of palmitic acid and oleic acid fits well with the first-order kinetic model (R2 = 0.9940-0.9999) with a reaction rate constant of 0.6055 and 1.1403 h-1, respectively. Further investigation reveals that the hydroxyl group of vanillin plays a pivotal role in the organocatalytic activity of sulfated Calix[4]resorcinarene.
Collapse
|
3
|
Zhang S, Pan H, Huang J, Li Y, Zhang H. A Highly Effective Biomass-Derived Solid Acid Catalyst for Biodiesel Synthesis Through Esterification. Front Chem 2022; 10:882235. [PMID: 35372280 PMCID: PMC8965869 DOI: 10.3389/fchem.2022.882235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 01/12/2023] Open
Abstract
Efficient valorization of renewable liquid biomass for biodiesel production using the desirable biomass-based catalysts is being deemed to be an environmentally friendly process. Herein, a highly active biomass-based solid acid catalyst (SiO2@Cs-SO3H) with renewable chitosan as raw material through sulfonation procedure under the relatively mild condition was successfully manufactured. The SiO2@Cs-SO3H catalyst was systematically characterized, especially with a large specific surface area (21.82 m2/g) and acidity (3.47 mmol/g). The catalytic activity of SiO2@Cs-SO3H was evaluated by esterification of oleic acid (OA) and methanol for biodiesel production. The best biodiesel yield was acquired by Response Surface Methodology (RSM). The optimized reaction conditions were temperature of 92°C, time of 4.1 h, catalyst dosage of 6.8 wt%, and methanol to OA molar ratio of 31.4, respectively. In this case, the optimal experimental biodiesel yield was found to be 98.2%, which was close to that of the predicted value of 98.4%, indicating the good reliability of RSM employed in this study. Furthermore, SiO2@Cs-SO3H also exhibited good reusability in terms of five consecutive recycles with 87.0% biodiesel yield. As such, SiO2@Cs-SO3H can be considered and used as a bio-based sustainable catalyst of high-efficiency for biodiesel production.
Collapse
Affiliation(s)
- Songdang Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research and Development of Fine Chemicals, Ministry of Education, Guizhou University, Guiyang, China
| | - Hu Pan
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Jinshu Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research and Development of Fine Chemicals, Ministry of Education, Guizhou University, Guiyang, China
| | - Yuncong Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research and Development of Fine Chemicals, Ministry of Education, Guizhou University, Guiyang, China
| | - Heng Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research and Development of Fine Chemicals, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Efficient Synthesis of Biodiesel Catalyzed by Chitosan-Based Catalysts. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1155/2021/8971613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Catalysts play an important role in the preparation of biodiesel. It is of great significance to study catalysts with high efficiency, low cost, and easy preparation. Compared with the homogeneous catalyst system, the heterogeneous catalyst is easy to separate and has a better catalytic effect. In heterogeneous catalysts, supports and preparation methods have important effects on the dispersion of active centers and the overall performance of catalysts. However, the supports of existing solid catalysts have defects in porosity, structural uniformity, stability, and specific surface area, and the preparation methods cannot stabilize covalent bonds or ionic bonds to bind catalytic sites. Considering the activity, preparation method, and cost of the catalyst, biomass-based catalyst is the best choice, but the specific surface area of the biomass-based catalyst is relatively low, the distribution of active centers is uneven, and it is easy to lose. Therefore, the hybrid carrier of biomass-based catalyst and other materials can not only improve the specific surface area but also make the distribution of active centers uniform and the catalytic activity better. Based on this, we summarized the application of chitosan hybrid material catalysts in biodiesel. The preparation, advantages and disadvantages, reaction conditions, and so on of chitosan-based catalysts were mainly concerned. At the same time, exploring the effects of different types of chitosan-based catalysts on the preparation of biodiesel and exploring the process technology with high efficiency and low consumption is the focus of this paper.
Collapse
|
5
|
Abstract
Biodiesel is a promising alternative to fossil fuels and mainly produced from oils/fat through the (trans)esterification process. To enhance the reaction efficiency and simplify the production process, various catalysts have been introduced for biodiesel synthesis. Recently, the use of bio-derived catalysts has attracted more interest due to their high catalytic activity and ecofriendly properties. These catalysts include alkali catalysts, acid catalysts, and enzymes (biocatalysts), which are (bio)synthesized from various natural sources. This review summarizes the latest findings on these bio-derived catalysts, as well as their source and catalytic activity. The advantages and disadvantages of these catalysts are also discussed. These bio-based catalysts show a promising future and can be further used as a renewable catalyst for sustainable biodiesel production.
Collapse
|
6
|
Functionalized Polymeric Materials for Catalytic Upgrading of Biobased Feedstocks. ADVANCES IN POLYMER TECHNOLOGY 2021. [DOI: 10.1155/2021/5036404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Bifunctional Heterogeneous Catalyst for Biodiesel Production from Waste Vegetable Oil. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093153] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bifunctional solid catalysts facilitate the esterification of free fatty acids (FFA) into alkyl esters alongside the transesterification reaction, which allows for the use of waste vegetable oils with high water and FFA contents for biodiesel production. This makes the process economically viable and greener, as the waste fats and oils are readily available. The concurrent esterification and transesterification of waste palm oil (WPO) and waste sunflower oil (WSO) with methanol was investigated in the presence of calcium oxide on alumina catalyst in a conventional batch process. The catalyst characterization showed the existence of calcium oxide aluminates (calcined at 750 °C), which exhibited crystalline phases with porous/spongy-like particles. The high concentration of CaO in CaO/Al2O3 was a favorable support material in the heterogeneously-catalyzed transesterification reactions. The optimum catalyst parameters for the production of fatty acid methyl esters (FAMEs) were observed at 65 °C for 4 h with a methanol-to-oil ratio of 9:1, 60% (waste palm oil, or WPO) and 80% (waste sunflower oil, or WSO), CaO/Al2O3 (% wt/wt) catalyst ratio as well as 4% CaO/Al2O3 concentration (% wt.) for WSO and WPO. The simultaneous esterification/transesterification reactions at optimum conditions on WPO and WSO led to high yield of FAMEs of 89, 61 and 55% for WPO and 54, 75 and 98% for WSO at catalyst ratios (wt %) of 60, 70 and 80% respectively. The use of bifunctional heterogeneous catalyst (CaO/Al2O3) with waste vegetable oil can result in high performance and the upscaling of biodiesel production.
Collapse
|