1
|
Zhao Z, Feng X, Zhao Y, Song Z, Zhang R, Zhang K, He Y, Chen G, Zhang J, Wang W. Gelatin/Poly (Lactic-Co-Glycolic Acid)/Attapulgite Composite Scaffold Equipped with Teriparatide Microspheres for Osteogenesis in vitro and in vivo. Int J Nanomedicine 2025; 20:581-604. [PMID: 39839456 PMCID: PMC11747967 DOI: 10.2147/ijn.s495204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Background Given the risks associated with autologous bone transplantation and the limitations of allogeneic bone transplantation, scaffolds in bone tissue engineering that incorporate bioactive peptides are highly recommended. Teriparatide (TPTD) plays a significant role in bone defect repair, although achieving controlled release of TPTD within a bone tissue engineering scaffold remains challenging. This work reports a new approach for treatment of teriparatide using a water-in-oil-in-water (w/o/w) microspheres be equipped on gelatin (GEL)/Poly lactic-glycolic acid (PLGA)/attapulgite (ATP) scaffold. Methods In this study, TPTD microspheres were prepared by the water-in-oil-in-water (w/o/w) double emulsion technique and GEL/PLGA/ATP composite scaffolds with different setups were prepared by salt leaching method. Both microspheres and scaffolds underwent physicochemical characterization. Mouse bone mesenchymal stem cells (BMSCs) were co-cultured with extracts from the microspheres and scaffolds to evaluate cell proliferation and osteogenesis. Four weeks post-implantation, the effectiveness of the scaffolds containing microspheres for repairing skull defects in mice was assessed. Results Both TPTD microspheres and the GEL/PLGA/ATP scaffold significantly enhanced the proliferation and osteogenic differentiation of BMSCs. Markers of osteoblast activity, including COL1, RUNX2, OCN, and OPN, were markedly up-regulated. Further, micro-CT, histological, and immunohistochemical analyses revealed extensive new bone formation on the scaffold. Conclusion The GEL/PLGA/ATP composite scaffold, equipped with TPTD microspheres, demonstrates significant potential for use in bone tissue engineering, providing an effective option for bone regeneration and repair in clinical applications.
Collapse
Affiliation(s)
- Zhenrui Zhao
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Xiaofei Feng
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Yuhao Zhao
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Zhengdong Song
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Ruihao Zhang
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Kui Zhang
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Yixiang He
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Guoliang Chen
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Jing Zhang
- Department of Orthopedics, Anlu People’s Hospital, Anlu, People’s Republic of China
| | - Wenji Wang
- Department of Orthopedics, the First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| |
Collapse
|
2
|
Tian F, Zhao Y, Wang Y, Xu H, Liu Y, Liu R, Li H, Ning R, Wang C, Gao X, Luo R, Jia S, Zhu L, Hao D. Magnesium-Based Composite Calcium Phosphate Cement Promotes Osteogenesis and Angiogenesis for Minipig Vertebral Defect Regeneration. ACS Biomater Sci Eng 2024; 10:7577-7593. [PMID: 39575879 DOI: 10.1021/acsbiomaterials.4c01521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Calcium phosphate cement (CPC) is an injectable bone cement with excellent biocompatibility, widely used for filling bone defects of various shapes. However, its slow degradation, insufficient mechanical strength, and poor osteoinductivity limit its further clinical applications. In this study, we developed a novel composite magnesium-based calcium phosphate cement by integrating magnesium microspheres into PLGA fibers obtained through wet spinning and incorporating these fibers into CPC. The inclusion of magnesium-based PLGA fibers enhanced the compressive strength and degradation rate of CPC, with the degradation rate of the magnesium microspheres being controllable to allow for the sustained release of magnesium ions. In vitro experiments showed that magnesium-based CPC enhanced the proliferation and migration of MC3T3-E1 and HUVECs. Additionally, the magnesium-based composite CPC not only enhanced osteogenic differentiation of MC3T3-E1 cells but also promoted angiogenesis in HUVECs. In vivo experiments using a vertebral bone defect model in Bama miniature pigs showed that the magnesium-based composite CPC significantly increased new bone formation. Additionally, compared to the CPC group, this composite exhibited significantly higher levels of osteogenic and angiogenic markers, with no inflammation or necrosis observed in the heart, liver, or kidneys, indicating good biocompatibility. These results suggest that magnesium-based composite CPC, with its superior compressive strength, biodegradability, and ability to promote vascularized bone regeneration, holds promise as a minimally invasive injectable material for bone regeneration.
Collapse
Affiliation(s)
- Fang Tian
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Yuqi Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Yuhao Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Hailiang Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Youjun Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Renfeng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Hui Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Ruojie Ning
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Chengwen Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Xinlin Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Rongjin Luo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Shuaijun Jia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Dingjun Hao
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| |
Collapse
|
3
|
Sun T, Huang H, Zhao Y, Li Z, Wang H, Zhou G. Low-Temperature Deposited Amorphous Poly(aryl ether ketone) Hierarchically Porous Scaffolds with Strontium-Doped Mineralized Coating for Bone Defect Repair. Adv Healthc Mater 2024; 13:e2400927. [PMID: 38717232 DOI: 10.1002/adhm.202400927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Indexed: 06/06/2024]
Abstract
In recent years, the demand for clinical bone grafting has increased. As a new solution for orthopedic implants, polyether ether ketone (PEEK, crystalline PAEK) has excellent comprehensive performance and is practically applied in the clinic. In this research, a noteworthy elevated scheme to enhance the performance of PEEK scaffolds is presented. The amorphous aggregated poly (aryl ether ketone) (PAEK) resin is prepared as the matrix material, which maintains high mechanical strength and can be processed through the solution. So, the tissue engineering scaffolds with multilevel pores can be printed by low-temperature deposited manufacturing (LDM) to improve biologically inert scaffolds with smooth surfaces. Also, the feature of PAEK's solution processing is profitable to uniformly add the functional components for bone repair. Ultimately, A system of orthopedic implantable PAEK material based on intermolecular interactions, surface topology, and surface modification is established. The specific steps include synthesizing PAEK that contain polar carboxyl structures, preparing bioinks and fabricating scaffolds by LDM, preparation of scaffolds with strontium-doped mineralized coatings, evaluation of their osteogenic properties in vitro and in vivo, and investigation on the effect and mechanism of scaffolds in promoting osteogenic differentiation. This work provides an upgraded system of PAEK implantable materials for clinical application.
Collapse
Affiliation(s)
- Tianze Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Huagui Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Yantao Zhao
- Institute of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Honghua Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Guangyuan Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| |
Collapse
|
4
|
Kalbali N, Hashemi-Najafabadi S, Bagheri F. Improving pore size of electrospun gelatin scaffolds containing graphene oxide using PEG as a sacrificial agent for bone tissue engineering. INT J POLYM MATER PO 2024; 73:1068-1077. [DOI: 10.1080/00914037.2023.2243370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/28/2023] [Indexed: 01/06/2025]
Affiliation(s)
- Najmeh Kalbali
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Sameereh Hashemi-Najafabadi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Liu H, Li K, Guo B, Yuan Y, Ruan Z, Long H, Zhu J, Zhu Y, Chen C. Engineering an injectable gellan gum-based hydrogel with osteogenesis and angiogenesis for bone regeneration. Tissue Cell 2024; 86:102279. [PMID: 38007880 DOI: 10.1016/j.tice.2023.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Injectable hydrogels are currently a topic of great interest in bone tissue engineering, which could fill irregular bone defects in a short time and avoid traditional major surgery. Herein, we developed an injectable gellan gum (GG)-based hydrogel for bone defect repair by blending nano-hydroxyapatite (nHA) and magnesium sulfate (MgSO4). In order to acquire an injectable GG-based hydrogel with superior osteogenesis, nHA were blended into GG solution with an optimized proportion. For the aim of endowing this hydrogel capable of angiogenesis, MgSO4 was also incorporated. Physicochemical evaluation revealed that GG-based hydrogel containing 5% nHA (w/v) and 2.5 mM MgSO4 (GG/5%nHA/MgSO4) had appropriate sol-gel transition time, showed a porosity-like structure, and could release magnesium ions for at least 14 days. Rheological studies showed that the GG/5%nHA/MgSO4 hydrogel had a stable structure and repeatable self-healing properties. In-vitro results determined that GG/5%nHA/MgSO4 hydrogel presented superior ability on stimulating bone marrow mesenchymal stem cells (BMSCs) to differentiate into osteogenic linage and human umbilical vein endothelial cells (HUVECs) to generate vascularization. In-vivo, GG/5%nHA/MgSO4 hydrogel was evaluated via a rat cranial defect model, as shown by better new bone formation and more neovascularization invasion. Therefore, the study demonstrated that the new injectable hydrogel, is a favorable bioactive GG-based hydrogel, and provides potential strategies for robust therapeutic interventions to improve the repair of bone defect.
Collapse
Affiliation(s)
- Hongbin Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Kaihu Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan, China
| | - Bin Guo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Yuhao Yuan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Zhe Ruan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Haitao Long
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Jianxi Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Yong Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China.
| | - Can Chen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China.
| |
Collapse
|
6
|
Mi L, Li F, Xu D, Liu J, Li J, Zhong L, Liu Y, Bai N. Performance of 3D printed porous polyetheretherketone composite scaffolds combined with nano-hydroxyapatite/carbon fiber in bone tissue engineering: a biological evaluation. Front Bioeng Biotechnol 2024; 12:1343294. [PMID: 38333080 PMCID: PMC10850574 DOI: 10.3389/fbioe.2024.1343294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Polyetheretherketone (PEEK) has been one of the most promising materials in bone tissue engineering in recent years, with characteristics such as biosafety, corrosion resistance, and wear resistance. However, the weak bioactivity of PEEK leads to its poor integration with bone tissues, restricting its application in biomedical fields. This research effectively fabricated composite porous scaffolds using a combination of PEEK, nano-hydroxyapatite (nHA), and carbon fiber (CF) by the process of fused deposition molding (FDM). The experimental study aimed to assess the impact of varying concentrations of nHA and CF on the biological performance of scaffolds. The incorporation of 10% CF has been shown to enhance the overall mechanical characteristics of composite PEEK scaffolds, including increased tensile strength and improved mechanical strength. Additionally, the addition of 20% nHA resulted in a significant increase in the surface roughness of the scaffolds. The high hydrophilicity of the PEEK composite scaffolds facilitated the in vitro inoculation of MC3T3-E1 cells. The findings of the study demonstrated that the inclusion of 20% nHA and 10% CF in the scaffolds resulted in improved cell attachment and proliferation compared to other scaffolds. This suggests that the incorporation of 20% nHA and 10% CF positively influenced the properties of the scaffolds, potentially facilitating bone regeneration. In vitro biocompatibility experiments showed that PEEK composite scaffolds have good biosafety. The investigation on osteoblast differentiation revealed that the intensity of calcium nodule staining intensified, along with an increase in the expression of osteoblast transcription factors and alkaline phosphatase activities. These findings suggest that scaffolds containing 20% nHA and 10% CF have favorable properties for bone induction. Hence, the integration of porous PEEK composite scaffolds with nHA and CF presents a promising avenue for the restoration of bone defects using materials in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Lian Mi
- Department of Oral Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Feng Li
- Department of Oral Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Dian Xu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Jian Liu
- Department of Oral Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Jian Li
- Department of Oral Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Lingmei Zhong
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanshan Liu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Dental Digital Medicine and 3D Printing Engineering Laboratory of Qingdao, Qingdao, China
| | - Na Bai
- Department of Oral Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Magnesium surface-activated 3D printed porous PEEK scaffolds for in vivo osseointegration by promoting angiogenesis and osteogenesis. Bioact Mater 2023; 20:16-28. [PMID: 35633876 PMCID: PMC9123089 DOI: 10.1016/j.bioactmat.2022.05.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 12/14/2022] Open
Abstract
Polyetheretherketone (PEEK) has been an alternative material for titanium in bone defect repair, but its clinical application is limited by its poor osseointegration. In this study, a porous structural design and activated surface modification were used to enhance the osseointegration capacity of PEEK materials. Porous PEEK scaffolds were manufactured via fused deposition modeling and a polydopamine (PDA) coating chelated with magnesium ions (Mg2+) was utilized on the surface. After surface modification, the hydrophilicity of PEEK scaffolds was significantly enhanced, and bioactive Mg2+ could be released. In vitro results showed that the activated surface could promote cell proliferation and adhesion and contribute to osteoblast differentiation and mineralization; the released Mg2+ promoted angiogenesis and might contribute to the formation of osteogenic H-type vessels. Furthermore, porous PEEK scaffolds were implanted in rabbit femoral condyles for in vivo evaluation of osseointegration. The results showed that the customized three-dimensional porous structure facilitated vascular ingrowth and bone ingrowth within the PEEK scaffolds. The PDA coating enhanced the interfacial osseointegration of porous PEEK scaffolds and the released Mg2+ accelerated early bone ingrowth by promoting early angiogenesis during the coating degradation process. This study provides an efficient solution for enhancing the osseointegration of PEEK materials, which has high potential for translational clinical applications. PEEK materials were modified by structural porosification and surface activation simultaneously. Bioactive Mg2+ released by surface-activated porous PEEK scaffolds enhanced angiogenesis and osteogenesis. Customized three-dimensional porous structure of PEEK scaffolds facilitated vascular ingrowth and bone ingrowth. Surface-activated porous PEEK scaffolds achieved satisfactory osseointegration in vivo.
Collapse
|
8
|
Wang J, Sun Y, Liu Y, Yu J, Sun X, Wang L, Zhou Y. Effects of platelet-rich fibrin on osteogenic differentiation of Schneiderian membrane derived mesenchymal stem cells and bone formation in maxillary sinus. Cell Commun Signal 2022; 20:88. [PMID: 35705970 PMCID: PMC9202141 DOI: 10.1186/s12964-022-00844-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/11/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The existence of mesenchymal stem cells (MSCs) in Schneiderian membrane has not been determined. The aim of this study is to investigate whether there are MSCs in Schneiderian membrane, and the effect of platelet-rich fibrin (PRF) on osteogenic differentiation of these cells and on new bone formation in maxillary sinus after maxillary sinus floor elevation. METHODS Schneiderian membrane derived mesenchymal stem cells (SM-MSCs) were isolated from rabbit maxillary sinus. Cells were identified by flow cytometry and multipotential differentiation. Real-time cell analysis assay, fluorescence staining, transwell assay, and wound healing assay were used to determine the effects of PRF stimulation on cell proliferation and migration. The osteogenic differentiation ability of cells stimulated by PRF or osteoinductive medium was evaluated by alkaline phosphatase staining, alizarin red staining, PCR and Western blot. Equivalent volume Bio-oss and the mixture of Bio-oss and PRF were used as bone graft materials for maxillary sinus floor elevation. Micro-CT, bone double-staining, HE staining, Masson staining, and toluidine blue staining were used to evaluate the osteogenic effect in 8 and 12 weeks after surgery. RESULTS The cell surface markers were positive for expression of CD90, CD105, and negative for expression of CD34, CD45. SM-MSCs had the ability of osteogenic, adipogenic and chondrogenic differentiation. PRF could stimulate proliferation, migration and osteogenic differentiation of SM-MSCs, which was achieved by up-regulating ERK 1/2 signaling pathway. PRF could accelerate the formation of new bone in maxillary sinus and increase the amount of new bone formation. CONCLUSIONS MSCs existed in Schneiderian membrane, and PRF stimulation could promote cell proliferation, migration and osteogenic differentiation. The application of PRF in maxillary sinus floor elevation could accelerate bone healing and increase the quantity and quality of new bone. PRF, as autologous graft materials, might offer a promising strategy for the clinical bone formation during MSFE procedure. Video Abstract.
Collapse
Affiliation(s)
- Jia Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021 China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Yue Sun
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| | - Yiping Liu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| | - Jize Yu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| | - Xiaolin Sun
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| | - Lin Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| |
Collapse
|
9
|
Berbéri A, Fayyad-Kazan M, Ayoub S, Bou Assaf R, Sabbagh J, Ghassibe-Sabbagh M, Badran B. Osteogenic potential of dental and oral derived stem cells in bone tissue engineering among animal models: An update. Tissue Cell 2021; 71:101515. [PMID: 33657504 DOI: 10.1016/j.tice.2021.101515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 12/20/2022]
Abstract
Small bone defects can heal spontaneously through the bone modeling process due to their physiological environmental conditions. The bone modeling cycle preserves the reliability of the skeleton through the well-adjusted activities of its fundamental cell. Stem cells are a source of pluripotent cells with a capacity to differentiate into any tissue in the existence of a suitable medium. The concept of bone engineering is based on stem cells that can differentiate into bone cells. Mesenchymal stromal cells have been evaluated in bone tissue engineering due to their capacity to differentiate in osteoblasts. They can be isolated from bone marrow and from several adults oral and dental tissues such as permanent or deciduous teeth dental pulp, periodontal ligament, apical dental papilla, dental follicle precursor cells usually isolated from the follicle surrounding the third molar, gingival tissue, periosteum-derived cells, dental alveolar socket, and maxillary sinus Schneiderian membrane-derived cells. Therefore, a suitable animal model is a crucial step, as preclinical trials, to study the outcomes of mesenchymal cells on the healing of bone defects. We will discuss, through this paper, the use of mesenchymal stem cells obtained from several oral tissues mixed with different types of scaffolds tested in different animal models for bone tissue engineering. We will explore and link the comparisons between human and animal models and emphasized the factors that we need to take into consideration when choosing animals. The pig is considered as the animal of choice when testing large size and multiple defects for bone tissue engineering.
Collapse
Affiliation(s)
- Antoine Berbéri
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Lebanese University, Beirut, Lebanon.
| | - Mohammad Fayyad-Kazan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon; Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath- Beirut, Lebanon.
| | - Sara Ayoub
- Department of Prosthodontics, Faculty of Dentistry, Lebanese University, Beirut, Lebanon.
| | - Rita Bou Assaf
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Lebanese University, Beirut, Lebanon.
| | - Joseph Sabbagh
- Department of Restorative Dentistry and Endodontics, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon.
| | - Michella Ghassibe-Sabbagh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath- Beirut, Lebanon.
| |
Collapse
|
10
|
Berbéri A, Sabbagh J, Bou Assaf R, Ghassibe-Sabbagh M, Al-Nemer F, El Majzoub R, Fayyad-Kazan M, Badran B. Comparing the osteogenic potential of schneiderian membrane and dental pulp mesenchymal stem cells: an in vitro study. Cell Tissue Bank 2021; 22:409-417. [PMID: 33386464 DOI: 10.1007/s10561-020-09887-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
Mesenchymal stem cells, being characterized by high self-renewal capacity and multi-lineage differentiation potential, are widely used in regenerative medicine especially for repair of bone defects in patients with poor bone regenerative capacity. In this study, we aimed to compare the osteogenic potential of human maxillary schneiderian sinus membrane (hMSSM)-derived stem cells versus permanent teeth dental pulp stem cells (DPSCs). Both cells types were cultivated in osteogenic and non-osteogenic inductive media. Alkaline phosphatase (ALP) activity assay and quantitative real-time PCR analysis were carried out to assess osteogenic differentiation. We showed that ALP activity and osteoblastic markers transcription levels were more striking in hMSSM-derived stem cells than DPSCs. Our results highlight hMSSM-derived stem cells as a recommended stem cell type for usage during bone tissue regenerative therapy.
Collapse
Affiliation(s)
- Antoine Berbéri
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Lebanese University, Rafic Hariri Campus, POBox 5208-116, Beirut, Lebanon.
| | - Joseph Sabbagh
- Department of Restorative Dentistry and Endodontics, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon
| | - Rita Bou Assaf
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Lebanese University, Rafic Hariri Campus, POBox 5208-116, Beirut, Lebanon
| | - Michella Ghassibe-Sabbagh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Fatima Al-Nemer
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon
| | - Rania El Majzoub
- School of Pharmacy (Department of Biomedical Sciences), Lebanese International University, Mazraa, 146404, Lebanon
| | - Mohammad Fayyad-Kazan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon. .,Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon.
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon
| |
Collapse
|