1
|
Abdusalomov A, Rakhimov M, Karimberdiyev J, Belalova G, Cho YI. Enhancing Automated Brain Tumor Detection Accuracy Using Artificial Intelligence Approaches for Healthcare Environments. Bioengineering (Basel) 2024; 11:627. [PMID: 38927863 PMCID: PMC11201188 DOI: 10.3390/bioengineering11060627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Medical imaging and deep learning models are essential to the early identification and diagnosis of brain cancers, facilitating timely intervention and improving patient outcomes. This research paper investigates the integration of YOLOv5, a state-of-the-art object detection framework, with non-local neural networks (NLNNs) to improve brain tumor detection's robustness and accuracy. This study begins by curating a comprehensive dataset comprising brain MRI scans from various sources. To facilitate effective fusion, the YOLOv5 and NLNNs, K-means+, and spatial pyramid pooling fast+ (SPPF+) modules are integrated within a unified framework. The brain tumor dataset is used to refine the YOLOv5 model through the application of transfer learning techniques, adapting it specifically to the task of tumor detection. The results indicate that the combination of YOLOv5 and other modules results in enhanced detection capabilities in comparison to the utilization of YOLOv5 exclusively, proving recall rates of 86% and 83% respectively. Moreover, the research explores the interpretability aspect of the combined model. By visualizing the attention maps generated by the NLNNs module, the regions of interest associated with tumor presence are highlighted, aiding in the understanding and validation of the decision-making procedure of the methodology. Additionally, the impact of hyperparameters, such as NLNNs kernel size, fusion strategy, and training data augmentation, is investigated to optimize the performance of the combined model.
Collapse
Affiliation(s)
- Akmalbek Abdusalomov
- Department of Computer Engineering, Gachon University, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Mekhriddin Rakhimov
- Department of Artificial Intelligence, Tashkent University of Information Technologies Named after Muhammad Al-Khwarizmi, Tashkent 100200, Uzbekistan; (M.R.); (J.K.)
| | - Jakhongir Karimberdiyev
- Department of Artificial Intelligence, Tashkent University of Information Technologies Named after Muhammad Al-Khwarizmi, Tashkent 100200, Uzbekistan; (M.R.); (J.K.)
| | - Guzal Belalova
- Department of Information Systems and Technologies, Tashkent State University of Economics, Tashkent 100066, Uzbekistan;
| | - Young Im Cho
- Department of Computer Engineering, Gachon University, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
- Department of Information Systems and Technologies, Tashkent State University of Economics, Tashkent 100066, Uzbekistan;
| |
Collapse
|
2
|
Majumder S, Katz S, Kontos D, Roshkovan L. State of the art: radiomics and radiomics-related artificial intelligence on the road to clinical translation. BJR Open 2024; 6:tzad004. [PMID: 38352179 PMCID: PMC10860524 DOI: 10.1093/bjro/tzad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/15/2023] [Accepted: 10/30/2023] [Indexed: 02/16/2024] Open
Abstract
Radiomics and artificial intelligence carry the promise of increased precision in oncologic imaging assessments due to the ability of harnessing thousands of occult digital imaging features embedded in conventional medical imaging data. While powerful, these technologies suffer from a number of sources of variability that currently impede clinical translation. In order to overcome this impediment, there is a need to control for these sources of variability through harmonization of imaging data acquisition across institutions, construction of standardized imaging protocols that maximize the acquisition of these features, harmonization of post-processing techniques, and big data resources to properly power studies for hypothesis testing. For this to be accomplished, it will be critical to have multidisciplinary and multi-institutional collaboration.
Collapse
Affiliation(s)
- Shweta Majumder
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Sharyn Katz
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Despina Kontos
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Leonid Roshkovan
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| |
Collapse
|
3
|
Research on Optimization Scheme for Blocking Artifacts after Patch-Based Medical Image Reconstruction. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2177159. [PMID: 35959350 PMCID: PMC9357777 DOI: 10.1155/2022/2177159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022]
Abstract
Due to limitations of computer resources, when utilizing a neural network to process an image with a high resolution, the typical processing approach is to slice the original image. However, because of the influence of zero-padding in the edge component during the convolution process, the central part of the patch often has more accurate feature information than the edge part, resulting in image blocking artifacts after patch stitching. We studied this problem in this paper and proposed a fusion method that assigns a weight to each pixel in a patch using a truncated Gaussian function as the weighting function. In this method, we used the weighting function to transform the Euclidean-distance between a point in the overlapping part and the central point of the patch where the point was located into a weight coefficient. With increasing distance, the value of the weight coefficient decreased. Finally, the reconstructed image was obtained by weighting. We employed the bias correction model to evaluate our method on the simulated database BrainWeb and the real dataset HCP (Human Connectome Project). The results show that the proposed method is capable of effectively removing blocking artifacts and obtaining a smoother bias field. To verify the effectiveness of our algorithm, we employed a denoising model to test it on the IXI-Guys human dataset. Qualitative and quantitative evaluations of both models show that the fusion method proposed in this paper can effectively remove blocking artifacts and demonstrates superior performance compared to five commonly available and state-of-the-art fusion methods.
Collapse
|
4
|
Song J, Yuan L. Brain tissue segmentation via non-local fuzzy c-means clustering combined with Markov random field. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:1891-1908. [PMID: 35135234 DOI: 10.3934/mbe.2022089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The segmentation and extraction of brain tissue in magnetic resonance imaging (MRI) is a meaningful task because it provides a diagnosis and treatment basis for observing brain tissue development, delineating lesions, and planning surgery. However, MRI images are often damaged by factors such as noise, low contrast and intensity brightness, which seriously affect the accuracy of segmentation. A non-local fuzzy c-means clustering framework incorporating the Markov random field for brain tissue segmentation is proposed in this paper. Firstly, according to the statistical characteristics that MRF can effectively describe the local spatial correlation of an image, a new distance metric with neighborhood constraints is constructed by combining probabilistic statistical information. Secondly, a non-local regularization term is integrated into the objective function to utilize the global structure feature of the image, so that both the local and global information of the image can be taken into account. In addition, a linear model of inhomogeneous intensity is also built to estimate the bias field in brain MRI, which has achieved the goal of overcoming the intensity inhomogeneity. The proposed model fully considers the randomness and fuzziness in the image segmentation problem, and obtains the prior knowledge of the image reasonably, which reduces the influence of low contrast in the MRI images. Then the experimental results demonstrate that the proposed method can eliminate the noise and intensity inhomogeneity of the MRI image and effectively improve the image segmentation accuracy.
Collapse
Affiliation(s)
- Jianhua Song
- The Key Laboratory of Intelligent Optimization and Information Processing, Minnan Normal University, Zhangzhou, 363000, China
- College of Physics and Information Engineering, Minnan Normal University, Zhangzhou, 363000, China
| | - Lei Yuan
- College of Physics and Information Engineering, Minnan Normal University, Zhangzhou, 363000, China
| |
Collapse
|
5
|
Song J, Zhang Z. Magnetic Resonance Imaging Segmentation via Weighted Level Set Model Based on Local Kernel Metric and Spatial Constraint. ENTROPY 2021; 23:e23091196. [PMID: 34573821 PMCID: PMC8465562 DOI: 10.3390/e23091196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022]
Abstract
Magnetic resonance imaging (MRI) segmentation is a fundamental and significant task since it can guide subsequent clinic diagnosis and treatment. However, images are often corrupted by defects such as low-contrast, noise, intensity inhomogeneity, and so on. Therefore, a weighted level set model (WLSM) is proposed in this study to segment inhomogeneous intensity MRI destroyed by noise and weak boundaries. First, in order to segment the intertwined regions of brain tissue accurately, a weighted neighborhood information measure scheme based on local multi information and kernel function is designed. Then, the membership function of fuzzy c-means clustering is used as the spatial constraint of level set model to overcome the sensitivity of level set to initialization, and the evolution of level set function can be adaptively changed according to different tissue information. Finally, the distance regularization term in level set function is replaced by a double potential function to ensure the stability of the energy function in the evolution process. Both real and synthetic MRI images can show the effectiveness and performance of WLSM. In addition, compared with several state-of-the-art models, segmentation accuracy and Jaccard similarity coefficient obtained by WLSM are increased by 0.0586, 0.0362 and 0.1087, 0.0703, respectively.
Collapse
Affiliation(s)
- Jianhua Song
- College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
- Correspondence:
| | - Zhe Zhang
- Electronic Engineering College, Heilongjiang University, Harbin 150080, China;
| |
Collapse
|
6
|
Papanikolaou N, Matos C, Koh DM. How to develop a meaningful radiomic signature for clinical use in oncologic patients. Cancer Imaging 2020; 20:33. [PMID: 32357923 PMCID: PMC7195800 DOI: 10.1186/s40644-020-00311-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/15/2020] [Indexed: 01/08/2023] Open
Abstract
During the last decade, there is an increasing usage of quantitative methods in Radiology in an effort to reduce the diagnostic variability associated with a subjective manner of radiological interpretation. Combined approaches where visual assessment made by the radiologist is augmented by quantitative imaging biomarkers are gaining attention. Advances in machine learning resulted in the rise of radiomics that is a new methodology referring to the extraction of quantitative information from medical images. Radiomics are based on the development of computational models, referred to as “Radiomic Signatures”, trying to address either unmet clinical needs, mostly in the field of oncologic imaging, or to compare radiomics performance with that of radiologists. However, to explore this new technology, initial publications did not consider best practices in the field of machine learning resulting in publications with questionable clinical value. In this paper, our effort was concentrated on how to avoid methodological mistakes and consider critical issues in the workflow of the development of clinically meaningful radiomic signatures.
Collapse
Affiliation(s)
- Nikolaos Papanikolaou
- Computational Clinical Imaging Group, Champalimaud Foundation, Centre for the Unknown, Av. Brasília, Doca de Pedrouços, 1400-038, Lisbon, Portugal.
| | - Celso Matos
- Department of Radiology, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Dow Mu Koh
- Department of Radiology, Royal Marsden Hospital, Sutton, UK
| |
Collapse
|