1
|
Vázquez-Jiménez LK, Rivera G, Juárez-Saldivar A, Ortega-Balleza JL, Ortiz-Pérez E, Jaime-Sánchez E, Paz-González A, Lara-Ramírez EE. Biological Evaluations and Computer-Aided Approaches of Janus Kinases 2 and 3 Inhibitors for Cancer Treatment: A Review. Pharmaceutics 2024; 16:1165. [PMID: 39339202 PMCID: PMC11435443 DOI: 10.3390/pharmaceutics16091165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer remains one of the leading diseases of mortality worldwide. Janus kinases 2/3 (JAK2/3) have been considered a drug target for the development of drugs to treat different types of cancer. JAK2/3 play a critical role in innate immunity, inflammation, and hematopoiesis by mediating the signaling of numerous cytokines, growth factors, and interferons. The current focus is to develop new selective inhibitors for each JAK type. In this review, the current strategies of computer-aided studies, and biological evaluations against JAK2/3 are addressed. We found that the new synthesized JAK2/3 inhibitors are prone to containing heterocyclic aromatic rings such as pyrimidine, pyridine, and pyrazolo [3,4-d]pyrimidine. Moreover, inhibitors of natural origin derived from plant extracts and insects have shown suitable inhibitory capacities. Computer-assisted studies have shown the important features of inhibitors for JAK2/3 binding. Biological evaluations showed that the inhibition of the JAK receptor affects its related signaling pathway. Although the reviewed compounds showed good inhibitory capacity in vitro and in vivo, more in-depth studies are needed to advance toward full approval of cancer treatments in humans.
Collapse
Affiliation(s)
- Lenci K. Vázquez-Jiménez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (G.R.); (A.J.-S.); (J.L.O.-B.); (E.O.-P.); (E.J.-S.); (A.P.-G.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City 03940, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (G.R.); (A.J.-S.); (J.L.O.-B.); (E.O.-P.); (E.J.-S.); (A.P.-G.)
| | - Alfredo Juárez-Saldivar
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (G.R.); (A.J.-S.); (J.L.O.-B.); (E.O.-P.); (E.J.-S.); (A.P.-G.)
| | - Jessica L. Ortega-Balleza
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (G.R.); (A.J.-S.); (J.L.O.-B.); (E.O.-P.); (E.J.-S.); (A.P.-G.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City 03940, Mexico
| | - Eyra Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (G.R.); (A.J.-S.); (J.L.O.-B.); (E.O.-P.); (E.J.-S.); (A.P.-G.)
| | - Elena Jaime-Sánchez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (G.R.); (A.J.-S.); (J.L.O.-B.); (E.O.-P.); (E.J.-S.); (A.P.-G.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City 03940, Mexico
| | - Alma Paz-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (G.R.); (A.J.-S.); (J.L.O.-B.); (E.O.-P.); (E.J.-S.); (A.P.-G.)
| | - Edgar E. Lara-Ramírez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (G.R.); (A.J.-S.); (J.L.O.-B.); (E.O.-P.); (E.J.-S.); (A.P.-G.)
| |
Collapse
|
2
|
Lu Q, Hu Y, Nabi F, Li Z, Janyaro H, Zhu W, Liu J. Effect of Penthorum Chinense Pursh Compound on AFB1-Induced Immune Imbalance via JAK/STAT Signaling Pathway in Spleen of Broiler Chicken. Vet Sci 2023; 10:521. [PMID: 37624308 PMCID: PMC10459701 DOI: 10.3390/vetsci10080521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Aflatoxin B1(AFB1) is the main secondary metabolite produced by Aspergillus flavus, which is highly toxic, carcinogenic, mutagenic and teratogenic. It can induce immune imbalance in animals or humans. Penthorum chinense Pursh (PCP) is a traditional herbal plant that has been used as a hepatoprotective drug with a long history in China. Based on the theory of traditional Chinese Medicine, we prepared Penthorum chinense Pursh Compound (PCPC) by combining four herbal medicines: 5 g Penthorum chinense Pursh, 5 g Radix bupleuri, 1 g Artemisia capillaris Thunb and 1 g Radix glycyrrhizae. The role of the Penthorum chinense Pursh Compound (PCPC) in preventing AFB1-induced immune imbalance in broiler chickens was studied. A total of 180 broiler chickens were equally distributed in six groups: controls, AFB1, YCHD and high-, medium- and low-dose PCPC treatment groups. After 28 days, broilers were anesthetized, and serum spleen and thymus samples were collected for analysis. Results show that AFB1 significantly increased and decreased the relative organ weight of the spleen and thymus, respectively. Pathological section of hematoxylin/eosin (H&E) stained spleen sections showed that AFB1 resulted in splenic tissue damage. Both the serum levels of Immunoglobulin A (IgA) and Immunoglobulin G (IgG) were suppressed in the AFB1 group. IL-6 was elevated in the AFB1 group. The balance between pro-inflammatory cytokines (IFN-γ and IL-2) and anti-inflammatory cytokine (IL-4) was disturbed by AFB1. The apoptosis-related protein and JAK/STAT pathway-related gene expression indicated that AFB1-induced apoptosis via JAK/STAT pathway. PCPC has proven its immunoprotective effects by preventing AFB1-induced immune imbalance. PCPC can be applied as a novel immune-modulating medicine in broiler chickens. It can be applied as a novel immune modulator in veterinary clinical practice.
Collapse
Affiliation(s)
- Qin Lu
- Immunology Research Center of Medical Research Institute, Southwest University, Chongqing 402460, China;
| | - Yu Hu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Y.H.); (F.N.); (Z.L.)
- Wanzhou District Livestock Industry Development Center, Chongqing 404020, China
| | - Fazul Nabi
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Y.H.); (F.N.); (Z.L.)
| | - Zhenzhen Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Y.H.); (F.N.); (Z.L.)
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China
| | - Habibullah Janyaro
- Department of Veterinary Surgery, Shaheed Benazir Bhutto University of Veterinary and Animal Science, Sakrand 67210, Pakistan;
| | - Wenyan Zhu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Juan Liu
- Immunology Research Center of Medical Research Institute, Southwest University, Chongqing 402460, China;
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Y.H.); (F.N.); (Z.L.)
| |
Collapse
|
3
|
Sanachai K, Mahalapbutr P, Tabtimmai L, Seetaha S, Kaekratoke N, Chamni S, Azam SS, Choowongkomon K, Rungrotmongkol T. In Silico and In Vitro Study of Janus Kinases Inhibitors from Naphthoquinones. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020597. [PMID: 36677654 PMCID: PMC9866339 DOI: 10.3390/molecules28020597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Janus kinases (JAKs) are involved in numerous cellular signaling processes related to immune cell functions. JAK2 and JAK3 are associated with the pathogenesis of leukemia and common lymphoid-derived illnesses. JAK2/3 inhibitors could reduce the risk of various diseases by targeting this pathway. Herein, the naphthoquinones were experimentally and theoretically investigated to identify novel JAK2/3 inhibitors. Napabucasin and 2'-methyl napabucasin exhibited potent cell growth inhibition in TF1 (IC50 = 9.57 and 18.10 μM) and HEL (IC50 = 3.31 and 6.65 μM) erythroleukemia cell lines, and they significantly inhibited JAK2/3 kinase activity (in a nanomolar range) better than the known JAK inhibitor, tofacitinib. Flow cytometric analysis revealed that these two compounds induced apoptosis in TF1 cells in a time and dose-dependent manner. From the molecular dynamics study, both compounds formed hydrogen bonds with Y931 and L932 residues and hydrophobically contacted with the conserved hinge region, G loop, and catalytic loop of the JAK2. Our obtained results suggested that napabucasin and its methylated analog were potential candidates for further development of novel anticancer drug targeting JAKs.
Collapse
Affiliation(s)
- Kamonpan Sanachai
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Lueacha Tabtimmai
- Department of Biotechnology, Faculty of Applied Science, King Mongkut’s University of Technology of North Bangkok, Bangkok 10800, Thailand
| | - Supaphorn Seetaha
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Nantawat Kaekratoke
- Department of Materials Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Supakarn Chamni
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural products and Nanoparticles Research Unit (NP2), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Correspondence: (K.C.); (T.R.); Tel.: +66-2-218-5426 (T.R.)
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (K.C.); (T.R.); Tel.: +66-2-218-5426 (T.R.)
| |
Collapse
|
4
|
Mo D, Zhu H, Wang J, Hao H, Guo Y, Wang J, Han X, Zou L, Li Z, Yao H, Zhu J, Zhou J, Peng Y, Li J, Meng K. Icaritin inhibits PD-L1 expression by Targeting Protein IκB Kinase α. Eur J Immunol 2021; 51:978-988. [PMID: 33354776 PMCID: PMC8248075 DOI: 10.1002/eji.202048905] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/30/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022]
Abstract
Icaritin, a small molecule currently being investigated in phase III clinical trials in China (NCT03236636 and NCT03236649) for treatment of advanced hepatocellular carcinoma (HCC), is a prenylflavonoid derivative obtained from the Epimedium genus. Previously, it was found that Icaritin decreased the expression of PD-L1, but its direct molecular targets and the underlying mechanisms have not been identified. In this study, we report the identification of IKK-α as the protein target of Icaritin by biotin-based affinity binding assay. The further mutagenesis assay has provided evidence that C46 and C178 in IKK-α were essential amino acids for Icaritin binding to IKK-α, revealing the binding sites of Icaritin to IKK-α for the first time. Functionally, Icaritin inhibited the NF-κB signalling pathway by blocking IKK complex formation, which led to decreased nuclear translocation of NF-κB p65, and subsequent downregulation of PD-L1 expression in a dose-dependent manner. More importantly, PD-L1-positive patients exhibited longer overall survival upon Icaritin therapy. Finally, Icaritin in combination with checkpoints antibodies, such as α-PD-1, has demonstrated much better efficacy than any single therapy in animal models. This is the first report that anticancer effects of Icaritin are mediated, at least in part, by impairing functions of IKK-α.
Collapse
Affiliation(s)
- Dongliang Mo
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Hai Zhu
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Jun Wang
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Haibang Hao
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Yuming Guo
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Jiaojiao Wang
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Xu Han
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Liangfeng Zou
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Zhongwan Li
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Hua Yao
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Jinsong Zhu
- 13110 NE 177th Place #100Plexera LLCWoodinvilleWAUSA
| | - Junma Zhou
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Yong Peng
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| | - Jian Li
- Institute of ImmunologyPLAThird Military Medical University (Army Medical University)ChongqingP. R. China
| | - Kun Meng
- Beijing Shenogen Pharma Group. LtdBeijingP. R. China
| |
Collapse
|
5
|
Wu YH, Wu YR, Li B, Yan ZY. Cryptotanshinone: A review of its pharmacology activities and molecular mechanisms. Fitoterapia 2020; 145:104633. [DOI: 10.1016/j.fitote.2020.104633] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
|
6
|
Zhang J, Liu X, Zhou W, Cheng G, Wu J, Guo S, Jia S, Liu Y, Li B, Zhang X, Wang M. A bioinformatics investigation into molecular mechanism of Yinzhihuang granules for treating hepatitis B by network pharmacology and molecular docking verification. Sci Rep 2020; 10:11448. [PMID: 32651427 PMCID: PMC7351787 DOI: 10.1038/s41598-020-68224-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Yinzhihuang granules (YZHG) is a patented Chinese medicine for the treatment of hepatitis B. This study aimed to investigate the intrinsic mechanisms of YZHG in the treatment of hepatitis B and to provide new evidence and insights for its clinical application. The chemical compounds of YZHG were searched in the CNKI and PUBMED databases, and their putative targets were then predicted through a search of the SuperPred and Swiss Target Prediction databases. In addition, the targets of hepatitis B were obtained from TTD, PharmGKB and DisGeNET. The abovementioned data were visualized using Cytoscape 3.7.1, and network construction identified a total of 13 potential targets of YZHG in the treatment of hepatitis B. Molecular docking verification showed that CDK6, CDK2, TP53 and BRCA1 might be strongly correlated with hepatitis B treatment. Furthermore, GO and KEGG analyses indicated that the treatment of hepatitis B by YZHG might be related to positive regulation of transcription, positive regulation of gene expression, the hepatitis B pathway and the viral carcinogenesis pathway. Network pharmacology intuitively shows the multicomponent, multitarget and multichannel pharmacological effects of YZHG in the treatment of hepatitis B and provides a scientific basis for its mechanism of action.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xinkui Liu
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Wei Zhou
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Guoliang Cheng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, 276000, China
| | - Jiarui Wu
- Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Siyu Guo
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shanshan Jia
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yingying Liu
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Bingbing Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, 276000, China
| | - Xiaomeng Zhang
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Miaomiao Wang
- Beijing University of Chinese Medicine, Beijing, 100102, China
| |
Collapse
|