1
|
Forenzo C, Larsen J. Bridging clinical radiotherapy and space radiation therapeutics through reactive oxygen species (ROS)-triggered delivery. Free Radic Biol Med 2024; 219:88-103. [PMID: 38631648 DOI: 10.1016/j.freeradbiomed.2024.04.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
This review explores the convergence of clinical radiotherapy and space radiation therapeutics, focusing on ionizing radiation (IR)-generated reactive oxygen species (ROS). IR, with high-energy particles, induces precise cellular damage, particularly in cancer treatments. The paper discusses parallels between clinical and space IR, highlighting unique characteristics of high-charge and energy particles in space and potential health risks for astronauts. Emphasizing the parallel occurrence of ROS generation in both clinical and space contexts, the review identifies ROS as a crucial factor with dual roles in cellular responses and potential disease initiation. The analysis covers ROS generation mechanisms, variations, and similarities in terrestrial and extraterrestrial environments leading to innovative ROS-responsive delivery systems adaptable for both clinical and space applications. The paper concludes by discussing applications of personalized ROS-triggered therapeutic approaches and discussing the challenges and prospects of implementing these strategies in clinical radiotherapy and extraterrestrial missions. Overall, it underscores the potential of ROS-targeted delivery for advancing therapeutic strategies in terrestrial clinical settings and space exploration, contributing to human health improvement on Earth and beyond.
Collapse
Affiliation(s)
- Chloe Forenzo
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29631, USA
| | - Jessica Larsen
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29631, USA; Department of Bioengineering, Clemson University, Clemson, SC, 29631, USA.
| |
Collapse
|
2
|
Hao P, Zhang C, Ma H, Wang R. Enhanced tumor inhibiting effect of 131I-BDI-1-based radioimmunotherapy and cytosine deaminase gene therapy modulated by a radio-sensitive promoter in nude mice bearing bladder cancer. JOURNAL OF RADIATION RESEARCH 2023; 64:85-90. [PMID: 36418230 PMCID: PMC9855308 DOI: 10.1093/jrr/rrac075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/05/2022] [Indexed: 06/16/2023]
Abstract
Radioimmunotherapy (RIT) has great potential in cancer therapy. However, its efficacy in numerous tumors is restricted due to myelotoxicity, thereby limiting the dose of radionuclide. To increase tumor radiosensitivity, we incorporated the recombinant lentivirus into the EJ cells (bladder cancer [BC] cells), and examined the combined anti-tumor effects of RIT with 131I-BDI-1(131I-monoclonal antibody against human BC-1) and gene therapy (GT). The recombinant lentivirus was constructed and packed. The animal xenograft model was built and when the tumor reached about 0.5 cm in diameter, the mice were randomly separated into four groups: (1) RIT + GT: the xenografts were continuously incorporated with the recombinant lentivirus for two days. And 7.4 MBq 131I-BDI-1 was IV-injected, and 10 mg prodrug 5-fluorocytosine (FC) was IV-injected for 7 days, (2) RIT: same dose of 131I-BDI-1 as the previous group mice, (3) GT: same as the first group, except no 131I-BDI-1, and (4) Untreated. Compute tumor volumes in all groups. After 28 days the mice were euthanized and the tumors were extracted and weighed, and the inhibition rate was computed. The RIT + GT mice, followed by the RIT mice, exhibited markedly slower tumor growth, compared to the control mice. The tumor size was comparable between the GT and control mice. The tumor inhibition rates after 28 days of incubation were 42.85 ± 0.23%, 27.92 ± 0.21% and 0.57 ± 0.11% for the four groups, respectively. In conclusion, RIT, combined with GT, suppressed tumor development more effectively than RIT or GT alone. This data highlights the potent additive effect of radioimmune and gene therapeutic interventions against cancer.
Collapse
Affiliation(s)
- Pan Hao
- Corresponding author. Department of Nuclear Medicine, LuHe Hospital, Capital Medical University, No.82, Xinhuanan road, Tongzhou district, Beijing LuHe Hospital. Beijing, China, 101149, Phone: +13811079497, fax: +86 010-69543901-8000, : Chunli Zhang Author, Dept of Nuclear Medicine, Peking University First Hospital, 8 Xishiku Rd, Xicheng District, Beijing, China,100034, Phone: +86 13716887128, fax: +86 010-83572915, , , , ,
| | - Chunli Zhang
- Corresponding author. Department of Nuclear Medicine, LuHe Hospital, Capital Medical University, No.82, Xinhuanan road, Tongzhou district, Beijing LuHe Hospital. Beijing, China, 101149, Phone: +13811079497, fax: +86 010-69543901-8000, : Chunli Zhang Author, Dept of Nuclear Medicine, Peking University First Hospital, 8 Xishiku Rd, Xicheng District, Beijing, China,100034, Phone: +86 13716887128, fax: +86 010-83572915, , , , ,
| | - Huan Ma
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
3
|
Min A, Fu A, Huang M, Wang H, Chen H. Primary Malignant Melanoma of the Cervix: An Integrated Analysis of Case Reports and Series. Front Oncol 2022; 12:913964. [PMID: 35814437 PMCID: PMC9258497 DOI: 10.3389/fonc.2022.913964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Melanoma, also known as malignant melanoma, is a type of malignant tumour that originates from melanocytes in the basal layer of the epidermis. Primary malignant melanomas of the female genital tract are rare. Similarly, primary malignant melanoma of cervix, which originates from cervical melanocytes, is an extremely rare disease and the second most common type of female melanoma in women aged between 15 to 44 years worldwide. To date, primary malignant melanoma of the cervix is characterized by poor patient prognosis and little consensus exists regarding the best treatment therapy. The situation is worsened by lack of clinical studies with large samples. Notably, surgery remains the preferred treatment option for patients with primary malignant melanomas of the cervix. Current treatments are based on Federation International of Gynecology and Obstetrics(2018) staging with reference to National Comprehensive Cancer Network guidelines. This study is in order to find a more suitable treatment modality for primary malignant melanoma of cervix. Therefore, we first conducted an integrated analysis of case reports and series to assess the impact of various factors on the prognosis of such patients. In summary, this is the first pooled analysis including 149 cases of primary cervical melanoma. We found that patients who underwent radical hysterectomy-based surgery, those with non-metastatic lymph nodes and those who underwent lymphadenectomy had significantly higher survival rates. In patients who had RH-based surgery, survival rates at the 24m time point of those who did not add other treatments was higher than those who did, but for those who had total hysterectomy-based surgery, the addition of other treatments to prolong median survival may be considered. In the overall analysis, age and lymphadenectomy were associated with increased and reduced risk of death in these patients, respectively. Although there is no statistical difference, stage III&IV, TAH, lymphatic metastases increase the risk of death; whereas radical hysterectomy was associated with reduced risk of death. In the subgroup analysis, for patients who have undergone radical hysterectomy-based surgery, lymphadenectomy reduces the risk of death, while lymphatic metastases and complementary other treatments increase the risk of death. For patients who have undergone total hysterectomy-based surgery, complementary treatment reduces the risk of death. In conclusion, via summarizing previous reports, the recommended treatment procedure for PMMC are radical hysterectomy and lymphadenectomy. The addition of other treatment options for patients who undergoing RH-based surgery need further study.
Collapse
Affiliation(s)
- Aiping Min
- Department of Obstetrics and Gynecology, People’s Hospital of Leshan, Leshan, China
| | - Aizhen Fu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Meiyuan Huang
- Department of Pathology, Zhuzhou Central Hospital, Zhuzhou, China
| | - Hongjing Wang
- West China Second University Hospital, Sichuan University, Chengdu, China
| | - Huan Chen
- Department of Obstetrics 1, Zhuzhou Central Hospital, Zhuzhou, China
- *Correspondence: Huan Chen,
| |
Collapse
|
4
|
Cui Y, Zheng Y, Lu Y, Zhang M, Yang L, Li W. LINC01224 facilitates the proliferation and inhibits the radiosensitivity of melanoma cells through the miR-193a-5p/NR1D2 axis. Kaohsiung J Med Sci 2021; 38:196-206. [PMID: 34783160 DOI: 10.1002/kjm2.12467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/08/2021] [Accepted: 10/04/2021] [Indexed: 12/22/2022] Open
Abstract
Melanoma is a skin cancer characterized by early metastasis and high mortality. Radiotherapy is a common treatment for melanoma in patients. Long noncoding RNAs play pivotal roles in regulating the radiosensitivity of many tumors, including melanomas. In this study, the role of LINC01224 in the radiosensitivity of melanoma cells was explored. The expression of LINC01224 in melanoma was examined by reverse transcription-quantitative polymerase chain reaction, and the results showed that LINC01224 was upregulated in melanoma tissues and cells. The effects of LINC01224 on cell proliferation and apoptosis in melanoma were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), colony formation, and flow cytometry assays. The effects of LINC01224 on the radiosensitivity of melanoma were analyzed by colony formation assay. The results implied that LINC01224 knockdown inhibited cell viability and proliferation but enhanced cell apoptosis and radiosensitivity. Luciferase reporter and RNA pull-down assays were performed to evaluate the relationships between LINC01224 and miR-193a-5p or miR-193a-5p and nuclear receptor subfamily 1 group D member 2 (NR1D2). We found that LINC01224 binds to miR-193a-5p, which directly targets NR1D2. In addition, we discovered that LINC01224 upregulated NR1D2 expression by sponging miR-193a-5p in melanoma cells. Overall, the data collected in this study suggest that LINC01224 exerts oncogenic effects in melanoma via the miR-193a-5p/NR1D2 axis.
Collapse
Affiliation(s)
- Yu Cui
- Department of CT, Chengde Central Hospital, Chengde, China
| | - Yi Zheng
- Department of CT, Chengde Central Hospital, Chengde, China
| | - Yue Lu
- Department of Ultrasound Diagnosis, Chengde Central Hospital, Chengde, China
| | - Muyuan Zhang
- Department of CT, Chengde Central Hospital, Chengde, China
| | - Lei Yang
- Department of CT, Chengde Central Hospital, Chengde, China
| | - Wei Li
- Department of CT, Chengde Central Hospital, Chengde, China
| |
Collapse
|
5
|
Additive effects of simulated microgravity and ionizing radiation in cell death, induction of ROS and expression of RAC2 in human bronchial epithelial cells. NPJ Microgravity 2020; 6:34. [PMID: 33298974 PMCID: PMC7645497 DOI: 10.1038/s41526-020-00123-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Radiation and microgravity are undoubtedly two major factors in space environment that pose a health threat to astronauts. However, the mechanistic study of their interactive biological effects is lacking. In this study, human lung bronchial epithelial Beas-2B cells were used to study the regulation of radiobiological effects by simulated microgravity (using a three-dimensional clinostat). It was found that simulated microgravity together with radiation induced drop of survival fraction, proliferation inhibition, apoptosis, and DNA double-strand break formation of Beas-2B cells additively. They also additively induced Ras-related C3 botulinum toxin substrate 2 (RAC2) upregulation, leading to increased NADPH oxidase activity and increased intracellular reactive oxygen species (ROS) yield. The findings indicated that simulated microgravity and ionizing radiation presented an additive effect on cell death of human bronchial epithelial cells, which was mediated by RAC2 to some extent. The study provides a new perspective for the better understanding of the compound biological effects of the space environmental factors.
Collapse
|
6
|
Exoenzyme C3 transferase lowers actin cytoskeleton dynamics, genomic stability and survival of malignant melanoma cells under UV-light stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111947. [PMID: 32652466 DOI: 10.1016/j.jphotobiol.2020.111947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/15/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Actin cytoskeleton remodeling is the major motor of cytoskeleton dynamics driving tumor cell adhesion, migration and invasion. The typical RhoA, RhoB and RhoC GTPases are the main regulators of actin cytoskeleton dynamics. The C3 exoenzyme transferase from Clostridium botulinum is a toxin that causes the specific ADP-ribosylation of Rho-like proteins, leading to its inactivation. Here, we examine what effects the Rho GTPase inhibition and the consequent actin cytoskeleton instability would have on the emergence of DNA damage and on the recovery of genomic stability of malignant melanoma cells, as well as on their survival. Therefore, the MeWo cell line, here assumed as a melanoma cell line model for the expression of genes involved in the regulation of the actin cytoskeleton, was transiently transfected with the C3 toxin and subsequently exposed to UV-radiation. Phalloidin staining of the stress fibers revealed that actin cytoskeleton integrity was strongly disrupted by the C3 toxin in association with reduced melanoma cells survival, and further enhanced the deleterious effects of UV light. MeWo cells with actin cytoskeleton previously perturbed by the C3 toxin still showed higher levels and accumulation of UV-damaged DNA (strand breaks and cyclobutane pyrimidine dimers, CPDs). The interplay between reduced cell survival and impaired DNA repair upon actin cytoskeleton disruption can be explained by constitutive ERK1/2 activation and an inefficient phosphorylation of DDR proteins (γH2AX, CHK1 and p53) caused by C3 toxin treatment. Altogether, these results support the general idea that actin network help to protect the genome of human cells from damage caused by UV light through unknown molecular mechanisms that tie the cytoskeleton to processes of genomic stability maintenance.
Collapse
|