1
|
Liu FJ, Zhang YL, Wang XS, Zhao YQ, Wang HW. Role of molybdenum in ameliorating busulfan-induced infertility in female mice. J Trace Elem Med Biol 2024; 86:127546. [PMID: 39418757 DOI: 10.1016/j.jtemb.2024.127546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Molybdenum (Mo) plays a crucial role in regulating normal physiological function. However, its potential effect on female infertility has received little attention. METHODS In this study, we explored the potential molecular mechanisms of Mo's action on mouse ovaries and oocytes by establishing a busulfan-induced infertility model. Adult female Kunming mice were randomly divided into three groups: control, +busulfan, and +busulfan+Mo. After 30 days of busulfan treatment [Myleran, 20 mg/kg body weight ip], mice in the busulfan+Mo group were provided with 7.5 mg/L Mo per day in drinking water for an additional 42 days. On day 72, we examined the morphology of the oocytes and ovarian tissue after H&E staining, measured the concentrations of serum hormones by ELISA, and detected Bax, Bcl-2, caspase-3 and caspase-9 by immunohistochemical staining and western immunoblotting. We also assessed the oxidative stress in cells by measuring the activity of the antioxidant enzyme, SOD, the concentrations of MDA and LDH, and the percentage of apoptotic cells using kits. The number of litters born was counted after mating with male mice, and the organ coefficients were calculated after weighing on an analytic balance. RESULTS Results showed that Mo treatment restored female reproductive hormone levels to near normal. Mo also significantly inhibited the mitochondrial stress-induced expression of apoptotic proteins. CONCLUSION Our findings demonstrate that Mo treatment at a dose of 7.5 mg/L can ameliorate busulfan-induced infertility in female mice. These data may provide a reference for the development of treatments for female infertility.
Collapse
Affiliation(s)
- Feng-Jun Liu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai 810016, China.
| | - Yu-Ling Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China.
| | - Xiao-Shan Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai 810016, China.
| | - Ya-Qin Zhao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai 810016, China.
| | - Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China.
| |
Collapse
|
2
|
Deng YL, Lu TT, Hao H, Liu C, Yuan XQ, Miao Y, Zhang M, Zeng JY, Li YF, Lu WQ, Zeng Q. Association between Urinary Haloacetic Acid Concentrations and Liver Injury among Women: Results from the Tongji Reproductive and Environmental (TREE) Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:17006. [PMID: 38261302 PMCID: PMC10805132 DOI: 10.1289/ehp13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Experimental studies have shown that disinfection byproducts (DBPs) including haloacetic acids (HAAs) can cause liver toxicity, but evidence linking this association in humans is sparse. OBJECTIVES We aimed to explore the associations between HAA exposures and liver injury. METHODS We included 922 women between December 2018 and January 2020 from the Tongji Reproductive and Environmental (TREE) cohort study in Wuhan, China. Urinary HAA concentrations including trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) and serum indicators of liver function, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyltransferase (GGT) were measured. Liver injury was defined as if any of serum indicator levels were above the 90th percentile. Multivariate logistic and linear regression models were fitted to assess the associations of urinary HAA concentrations with the risk of liver injury and liver function indicators. Stratified analyses by age, body mass index (BMI), alcohol use, and passive smoking were also applied to evaluate the potential effect modifiers. RESULTS There is little evidence of associations of urinary TCAA concentrations with liver injury risk and liver function indicators. However, urinary DCAA concentrations were associated with a higher risk of liver injury [odds ratios (OR) for 1-interquartile range (IQR) increase in natural log (ln) transformed DCAA concentrations: 1.45; 95% confidence interval (CI): 1.07, 1.98]. This association was observed only among nondrinkers (p interaction = 0.058 ). We also found that a 1-IQR increase in ln-transformed DCAA concentrations was positively associated with ALT levels (percentage change = 6.06 % ; 95% CI: 0.48%, 11.95%) and negatively associated with AST/ALT (percentage change = - 4.48 % ; 95% CI: - 7.80 % , - 1.04 % ). In addition, urinary DCAA concentrations in relation to higher GGT levels was observed only among passive smokers (p interaction = 0.040 ). CONCLUSION Our findings suggest that exposure to DCAA but not TCAA is associated with liver injury among women undergoing assisted reproductive technology. https://doi.org/10.1289/EHP13386.
Collapse
Affiliation(s)
- Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Ting-Ting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hua Hao
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao-Qiong Yuan
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu-Feng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Liu S, Liu J, Wu Y, Tan L, Luo Y, Ding C, Tang Z, Shi X, Fan W, Song S. Genistein upregulates AHR to protect against environmental toxin-induced NASH by inhibiting NLRP3 inflammasome activation and reconstructing antioxidant defense mechanisms. J Nutr Biochem 2023; 121:109436. [PMID: 37666477 DOI: 10.1016/j.jnutbio.2023.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
We have previously proven that the environmental toxin could accelerate the development and progression of nonalcoholic steatohepatitis (NASH). However, the underlying mechanism associated with such excessive inflammation hasn't been fully illustrated. Although Genistein has been well accepted for its capability in anti-inflammation and anti-oxidation, its effect in ameliorating contaminants-induced NASH still needs to be identified. In this study, using chickens and primary chicken hepatocytes as models, we found that NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome were over-activated in bromoacetic acid (BAA, one of the typical environmental toxins)-induced NASH, characterized by the infiltration of inflammatory cell, and the increase of NLRP3, Caspase-1 p20, and cytokines (IL-1β, IL-18) expressions. Interestingly, genistein treatment could recover these changes, with the signs of restored activities of anti-oxidases, decreased expressions of NLRP3 inflammasome components, and increased levels of elements in phase I metabolic system. The detailed mechanism was that, via up-regulating aryl hydrocarbon receptor (AHR), genistein lifted mRNA levels of Cyp1-related genes to reconstruct cytochrome P450 (CYP450) systems, and the raised AHR negatively regulated NLRP3 inflammasome activity to relieve inflammation. More important, the interaction and co-localization between AHR and NLRP3 was first proved, and genistein could promote the levels of AHR that interacted with NLRP3, which thereafter blocked the activation of NLRP3 inflammasome. Conclusively, in this research, we confirmed the AHR-dependent protective role of genistein in environmental toxin-linked NASH, which shed light on the potential precautions for contaminants-induced NASH.
Collapse
Affiliation(s)
- Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Jiwen Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yuting Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Lei Tan
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Yan Luo
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Zhihui Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| |
Collapse
|
4
|
Deng YL, Liu C, Yuan XQ, Luo Q, Miao Y, Chen PP, Cui FP, Zhang M, Zeng JY, Shi T, Lu TT, Li YF, Lu WQ, Zeng Q. Associations between Urinary Concentrations of Disinfection Byproducts and in Vitro Fertilization Outcomes: A Prospective Cohort Study in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:97003. [PMID: 37671782 PMCID: PMC10481678 DOI: 10.1289/ehp12447] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/28/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Experimental studies show that disinfection byproducts (DBPs) can inhibit oocyte maturation, decrease fertilization capacity, and impair embryo development, but human evidence is lacking. OBJECTIVES We aimed to evaluate the associations between exposure to drinking water DBPs and in vitro fertilization (IVF) outcomes. METHODS The study included 1,048 women undergoing assisted reproductive technology (ART) treatment between December 2018 and January 2020 from a prospective cohort study, the Tongji Reproductive and Environmental study in Wuhan, China. Exposure to DBPs was assessed by dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) in up to four urine samples, which were collected on the day of both enrollment and oocyte retrieval. Multivariable generalized linear mixed models, accounting for multiple IVF cycles per woman, were applied to evaluate the associations between urinary biomarkers of DBP exposures and IVF outcomes. Stratified analyses were used to explore the potential effect modifiers. RESULTS The included 1,048 women underwent 1,136 IVF cycles, with 960 (91.6%), 84 (8.0%), and 4 (0.4%) women contributing one cycle, two cycles, and three cycles, respectively. We found that elevated quartiles of urinary DCAA and TCAA concentrations were associated with reduced numbers of total oocytes and metaphase II oocytes and that urinary DCAA concentrations with a lower proportion of best-quality embryos (all p for trends < 0.05 ). Moreover, elevated quartiles of urinary DCAA concentrations were associated with decreased proportions of successful implantation, clinical pregnancy, and live birth (14%, 15%, and 15% decreases in adjusted means comparing the extreme quartiles, respectively; all p for trends < 0.05 ). Stratification analyses showed that the inverse associations of urinary TCAA concentrations with multiple IVF outcomes were stronger among women ≥ 30 y of age (p for interactions < 0.05 ). DISCUSSION Exposure to drinking water DBPs was inversely associated with some IVF outcomes among women undergoing ART treatment. Further study is necessary to confirm our findings. https://doi.org/10.1289/EHP12447.
Collapse
Affiliation(s)
- Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao-Qiong Yuan
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tian Shi
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting-Ting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu-Feng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Yan C, Hu W, Tu J, Li J, Liang Q, Han S. Pathogenic mechanisms and regulatory factors involved in alcoholic liver disease. J Transl Med 2023; 21:300. [PMID: 37143126 PMCID: PMC10158301 DOI: 10.1186/s12967-023-04166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
Alcoholism is a widespread and damaging behaviour of people throughout the world. Long-term alcohol consumption has resulted in alcoholic liver disease (ALD) being the leading cause of chronic liver disease. Many metabolic enzymes, including alcohol dehydrogenases such as ADH, CYP2E1, and CATacetaldehyde dehydrogenases ALDHsand nonoxidative metabolizing enzymes such as SULT, UGT, and FAEES, are involved in the metabolism of ethanol, the main component in alcoholic beverages. Ethanol consumption changes the functional or expression profiles of various regulatory factors, such as kinases, transcription factors, and microRNAs. Therefore, the underlying mechanisms of ALD are complex, involving inflammation, mitochondrial damage, endoplasmic reticulum stress, nitrification, and oxidative stress. Moreover, recent evidence has demonstrated that the gut-liver axis plays a critical role in ALD pathogenesis. For example, ethanol damages the intestinal barrier, resulting in the release of endotoxins and alterations in intestinal flora content and bile acid metabolism. However, ALD therapies show low effectiveness. Therefore, this review summarizes ethanol metabolism pathways and highly influential pathogenic mechanisms and regulatory factors involved in ALD pathology with the aim of new therapeutic insights.
Collapse
Affiliation(s)
- Chuyun Yan
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Jinqi Tu
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College of Wuhu, Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
6
|
Liu S, Gao Z, He W, Wu Y, Liu J, Zhang S, Yan L, Mao S, Shi X, Fan W, Song S. The gut microbiota metabolite glycochenodeoxycholate activates TFR-ACSL4-mediated ferroptosis to promote the development of environmental toxin-linked MAFLD. Free Radic Biol Med 2022; 193:213-226. [PMID: 36265794 DOI: 10.1016/j.freeradbiomed.2022.10.270] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has become the most common chronic liver disorders in the world, and yet has no approved pharmacotherapy due to the etiology is complex. In the last ten years, increasing evidence have identified the environmental pollutants as risk factors for MAFLD. However, the underlying mechanism remains unclear. Our study found that bromoacetic acid (BAA, a typical kind of environmental toxin) increased triglycerides and total cholesterol levels as well as induced obvious hepatic steatosis and inflammation. The lipidomics showed that ferroptosis was implicated in the environmental toxin-linked MAFLD. Besides, the analysis of microbial metabolomics showed significant change of gut microbiome in BAA groups and the content of gut microbiota metabolite (glycochenodeoxycholate, GCDCA) increased sharply. In vitro study, we observed features of ferroptotic cells by transmission electron microscopy after BAA/GCDCA treatment. Besides, we demonstrated that BAA/GCDCA significantly increased iron contents, with upregulating transferrin receptor (TFR) and acyl-CoA synthetase long-chain family 4 (ACSL4) expression levels. By contrast, iron chelator or silencing TFR relieved BAA/GCDCA-induced lipid metabolism disorder and inflammation. What's more, the interaction between TFR and ACSL4 was also identified. Taken together, we found that, in response to environmental toxin, gut microbiota metabolite GCDCA activates TFR-ACSL4-mediated ferroptosis, which triggered subsequent lipid metabolism disorder and inflammation. Moreover, these findings firstly highlighted the functional relevance among ferroptosis, lipid metabolism and gut microbiota metabolite during environmental pollutant exposure, which shed light on the deep mechanism of environmental toxin-related MAFLD, providing potential targets for the prevention of MAFLD.
Collapse
Affiliation(s)
- Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanqiu He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuting Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiwen Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuo Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengyong Mao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Salidroside alleviates hepatic ischemia-reperfusion injury during liver transplant in rat through regulating TLR-4/NF-κB/NLRP3 inflammatory pathway. Sci Rep 2022; 12:13973. [PMID: 35978104 PMCID: PMC9385636 DOI: 10.1038/s41598-022-18369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2022] Open
Abstract
Salidroside has anti-inflammatory, antioxidant and hepatoprotective properties. However, its effect on hepatic ischemia–reperfusion injury (IRI), an unavoidable side effect associated with liver transplantation, remains undefined. Here, we aimed to determine whether salidroside alleviates hepatic IRI and elucidate its potential mechanisms. We used both in vivo and in vitro assays to assess the effect and mechanisms of salidroside on hepatic IRI. Hepatic IRI rat models were pretreated with salidroside (5, 10 or 20 mg/kg/day) for 7 days following liver transplantation while hypoxia/reoxygenation (H/R) model of RAW 264.7 macrophages were pretreated with salidroside (1, 10 or 50 μM). The effect of salidroside on hepatic IRI was assessed using hematoxylin–eosin staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, qRT-PCR, immunosorbent assay and western blotting. Our in vivo assays showed that salidroside significantly reduced pathological liver damage, serum aminotransferase levels and serum levels of IL-1, IL-18 and TNF-α. Besides, salidroside reduced the expression of TLR-4/NF-κB/NLRP3 inflammatory pathway associated proteins (TLR-4, MyD88, p-IKKα, p-IKKβ, p-IKK, p-IκBα, p-P65, NLRP3, ASC, Cleaved caspase-1, IL-1β, IL-18, TNF-α and IL-6) in rats after liver transplantation. On the other hand, data from the in vitro analysis demonstrated that salidroside blocks expression of TLR-4/NF-κB/NLRP3 inflammatory pathway related proteins in the RAW264.7 cells treated with H/R. The salidroside-specific anti-inflammatory effects were partially inhibited by the TLR-4 agonist lipopolysaccharide. Taken together, our study showed that salidroside inhibits hepatic IRI following liver transplantation by modulating the TLR-4/NF-κB/NLRP3 inflammatory pathway.
Collapse
|
8
|
Abdel-Latif R, Heeba GH, Hassanin SO, Waz S, Amin A. TLRs-JNK/ NF-κB Pathway Underlies the Protective Effect of the Sulfide Salt Against Liver Toxicity. Front Pharmacol 2022; 13:850066. [PMID: 35517830 PMCID: PMC9065287 DOI: 10.3389/fphar.2022.850066] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/11/2022] [Indexed: 12/11/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenously gas transmitter signaling molecule with known antioxidant, anti-inflammatory, and cytoprotective properties. Although accumulating evidence shows the therapeutic potential of H2S in various hepatic diseases, its role in cyclophosphamide (CP)-induced hepatotoxicity remains elusive. The present study was undertaken to investigate the impact of endogenous and exogenous H2S on toll-like receptors (TLRs)-mediated inflammatory response and apoptosis in CP-induced hepatotoxicity. Either an H2S donor (NaHS (100 μM/kg) or an H2S blocker [dl-propargylglycine (PAG) (30 mg/kg, i. p.)], was administered for 10 days before a single ip injection of CP (200 mg/kg). NaHS attenuated conferred hepatoprotection against CP-induced toxicity, significantly decreasing serum hepatic function tests and improving hepatic histopathology. Additionally, NaHS-treated rats exhibited antioxidant activity in liver tissues compared with the CP group. The upregulated hepatic levels of TLR2/4 and their downstream signaling molecules including c-Jun N-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) were also suppressed by NaHS protective treatment. NaHS showed anti-inflammatory and antiapoptotic effects; reducing hepatic level tumor necrosis factor-alpha (TNF-α) and caspase-3 expression. Interestingly, the cytotoxic events induced in CP-treated rats were not significantly altered upon the blocking of endogenous H2S. Taken together, the present study suggested that exogenously applied H2S rather than the endogenously generated H2S, displayed a hepatoprotective effect against CP-induced hepatotoxicity that might be mediated by TLRs-JNK/NF-κB pathways.
Collapse
Affiliation(s)
- Rania Abdel-Latif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Gehan Hussein Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Soha Osama Hassanin
- Department of Biochemistry, Faculty of Pharmacy, MTI University, Cairo, Egypt
| | - Shaimaa Waz
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Amr Amin
- The College, The University of Chicago, Chicago, IL, United States.,Department of Biology, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
9
|
Zheng S, Yang Y, Wen C, Liu W, Cao L, Feng X, Chen J, Wang H, Tang Y, Tian L, Wang X, Yang F. Effects of environmental contaminants in water resources on nonalcoholic fatty liver disease. ENVIRONMENT INTERNATIONAL 2021; 154:106555. [PMID: 33857709 DOI: 10.1016/j.envint.2021.106555] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) has been increasing rapidly in recent years, which is now estimated to be over 25%. NAFLD is one of the most common chronic liver diseases in the world. At present, with the rapid development of economy and industrialization, many chemicals are released into the environment. These chemical contaminants in the environment might cause harm to human health and result in lipid metabolism disorder during long-term exposure. Moreover, the incentive of many NAFLD cases is unknown, and the environmental risk factors of NAFLD need to be urgently identified. Hence, we focus on the impacts of several popular environmental contaminants in water environment on the development and progression of NAFLD. These contaminants mainly include microcystins (MCs), disinfection by-products (DBPs), heavy metals (HMs), dioxins and polychlorinated biphenyls (PCBs). Through analyzing a great many epidemiological and toxicological studies, we have found positive associations between NAFLD and chronic exposure to these contaminants at the environmental levels. This review may enhance the understanding of liver damage caused by environmental pollutants, which are considered as tangible environmental risk factors for NAFLD.
Collapse
Affiliation(s)
- Shuilin Zheng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Yue Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Cong Wen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Wenya Liu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Linghui Cao
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Xiangling Feng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Jihua Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Hui Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China
| | - Yan Tang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China
| | - Li Tian
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health Southeast University, Nanjing 210009, China.
| |
Collapse
|
10
|
Chen LJ, He JT, Pan M, Liu JL, Zhang KK, Li JH, Wang LB, Xu LL, Chen YK, Zhang QY, Li DR, Xu JT, Xie XL. Antibiotics Attenuate Methamphetamine-Induced Hepatotoxicity by Regulating Oxidative Stress and TLR4/MyD88/Traf6 Axis. Front Pharmacol 2021; 12:716703. [PMID: 34381368 PMCID: PMC8350338 DOI: 10.3389/fphar.2021.716703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Methamphetamine (METH) is a major psychostimulant drug of abuse worldwide, and its neurotoxicity has been studied extensively. In addition to neurotoxicity, METH can also induce hepatotoxicity. The underlying mechanism of intestinal microorganisms in METH-induced hepatotoxicity remains unclear. In this study, mice have received antibiotics intragastrically or PBS once each day for 1 week, followed by METH or saline. The antibiotics attenuated METH-induced hepatotoxicity as evidenced by histopathological observation and biochemical analysis; furthermore, they alleviated METH-induced oxidative stress. The effect of antibiotics on METH-induced hepatotoxicity was investigated using RNA-sequencing (RNA-seq). The RNA-seq results demonstrated that antibiotics could regulate 580 differentially expressed genes (DEGs), of which 319 were upregulated after METH treatment and then downregulated with antibiotic pretreatment and 237 were first downregulated after METH administration and then upregulated after antibiotic pretreatment, in addition to 11 upregulated and 13 downregulated ones simultaneously in METH and antibiotic-pretreated groups. RNA-seq analyses revealed that TLR4 is one of the hub genes. Western blot analysis indicated that antibiotics inhibited the increase of TLR4, MyD88 and Traf6 induced by METH. This research suggests that antibiotics may play an important role in preventing METH-induced liver injury by regulating oxidative stress and TLR4/MyD88/Traf6 axis, though further investigation is required.
Collapse
Affiliation(s)
- Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jie-Tao He
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, China
| | - Ming Pan
- Department of Anesthesiology, Dalian Municipal Central Hospital, Dalian, China
| | - Jia-Li Liu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Hao Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Bin Wang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Ling-Ling Xu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Yu-Kui Chen
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Qin-Yao Zhang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Dong-Ri Li
- Department of Forensic Evidence Science, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jing-Tao Xu
- Department of Forensic Clinical Medicine, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Wang X, Wang L, Dong R, Huang K, Wang C, Gu J, Luo H, Liu K, Wu J, Sun H, Meng Q. Luteolin ameliorates LPS-induced acute liver injury by inhibiting TXNIP-NLRP3 inflammasome in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 87:153586. [PMID: 34044253 DOI: 10.1016/j.phymed.2021.153586] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/17/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Chemical liver injury is one of the main causes of acute liver failure and death. To date, however, treatment strategies for acute liver injury have been limited. Therefore, there is an urgent need to find new therapeutic targets and effective drugs. NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome is a complex of multiple proteins that has been shown to induce cell death under inflammatory and stress pathologic conditions and is thought to provide new targets for the treatment of a variety of diseases. PURPOSE The purpose of this study was to investigate whether luteolin has a protective effect on the liver and further elucidate whether it is realized through the thioredoxin interacting protein (TXNIP)-NLRP3 axis. STUDY DESIGN Acute hepatic injury in mice caused by intraperitoneal injection of lipopolysaccharide (LPS) was treated with or without luteolin. METHODS Male C57BL/6 mice and mouse primary hepatocytes were selected. TXNIP protein knockdown was achieved by siRNA, qPCR and Western blot were performed to explore the mechanism of luteolin in alleviating acute liver injury. RESULTS The results indicated that luteolin had a markedly protective effect on acute liver injury induced by LPS in mice by inhibiting the TXNIP-NLRP3 axis. Luteolin inhibits NLRP3 inflammasome activation by suppressing TXNIP, apoptosis associated speck-like protein containing a CARD domain (ASC), caspase-1, interleukin-1β (IL-1β) and IL-18 to reduce liver injury. In addition, luteolin inhibits LPS-induced liver inflammation by inhibiting the production of inflammation-related gene tumor necrosis factor-α (TNF-α), IL-10, and IL-6. What's more, luteolin alleviated LPS-induced hepatocyte injury by inhibiting oxidative stress and regulating MDA, SOD, and GSH levels. However, the protective effect of luteolin on acute LPS-induced liver injury in mice was blocked by si-TXNIP in vitro. CONCLUSIONS These combined data showed that luteolin may alleviate LPS-induced liver injury through the TXNIP-NLPR3 axis, providing new therapeutic targets and therapeutic drugs for subsequent studies.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lu Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Renchao Dong
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Kai Huang
- Drug Clinical Trial Institution, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jiangning Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Haifeng Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
12
|
Zhou WT, Wang LB, Yu H, Zhang KK, Chen LJ, Wang Q, Xie XL. N-acetylcysteine alleviates PCB52-induced hepatotoxicity by repressing oxidative stress and inflammatory responses. PeerJ 2020; 8:e9720. [PMID: 32864221 PMCID: PMC7427542 DOI: 10.7717/peerj.9720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Polychlorinated biphenyls (PCBs), particularly low chlorinated congeners in our environment, can induce human hepatotoxicity. However, the mechanisms by which PCBs cause hepatotoxicity remain elusive. Moreover, there are no effective treatments for this condition. In this study, 40 μM PCB52 was administered to rat (Brl-3A) and human hepatocytes (L-02) for 48 h following the N-acetylcysteine (NAC)/saline pretreatment. A significant decrease in cell viability was observed in PCB52-treated cells relative to the control. Besides, PCB52 significantly increased reactive oxygen species (ROS) levels and malondialdehyde (MDA) contents, suggesting induction of oxidative stress. The expression of Traf6, MyD88, and Tnf in Brl-3A cells and that of MYD88, TNF, and IL1B in L-02 cells were significantly upregulated by PCB52. Consistently, overexpression of TLR4, MyD88, Traf6, and NF-κB p65 proteins was observed in PCB52-treated cells, indicating activation of inflammatory responses. Nevertheless, no changes in kelch-like ECH-associated protein 1 (keap1), nuclear factor-erythroid 2-related factor (nrf2), and heme oxygenase-1 proteins were observed in PCB52-treated cells, indicating non-activation of the keap1/nrf2 pathway. Pretreatment with NAC significantly ameliorated PCB52 effects on cell viability, ROS levels, MDA contents and expression of inflammatory elements at both RNA and protein levels. However, no changes in keap1, nrf2 and HO-1 protein levels were detected following NAC pretreatment. Taken together, with non-activated keap1/nrf2 pathway, PCB52-induced oxidative stress and inflammatory responses could be responsible for its hepatotoxicity. These effects were effectively attenuated by NAC pretreatment, which scavenges ROS and dampens inflammatory responses. This study might provide novel strategies for the treatment of the PCBs-associated hepatotoxic effects.
Collapse
Affiliation(s)
- Wen-Tao Zhou
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, China
| | - Li-Bin Wang
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, China
| | - Hao Yu
- The 2015 Class, 8-Year Program, The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, China
| |
Collapse
|