1
|
Abukhadra MR, Allah AF, Shaban M, Alenazi NA, Alqhtani HA, Bin-Jumah M, Allam AA. Enhanced remediation of U(vi) ions from water resources using advanced forms of morphologically modified glauconite (nano-sheets and nano-rods): experimental and theoretical investigations. RSC Adv 2024; 14:28017-28034. [PMID: 39228761 PMCID: PMC11369765 DOI: 10.1039/d4ra05514d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Two forms of morphologically transformed glauconite (GL) involved exfoliated nanosheets (EXG) and nanorods (GRs), which were synthesized by facile exfoliating and scrolling modification under sonication. The two advanced forms (EXG and GRs) were applied as enhanced adsorbents for U(vi) ions and compared with using raw glauconite. The developed GRs structure displays higher saturation retention properties (319.5 mg g-1) in comparison with both EXG (264.8 mg g-1) and GL (237.9 mg g-1). This enhancement is assigned to the noticeable increment in the surface area (32.6 m2 g-1 (GL), 86.4 m2 g-1 (EXG), and 123.7 m2 g-1 (GRs)) in addition to the surface reactivity and exposure of effective siloxane groups. This was supported by the steric investigation based on the isotherm basics of the monolayer model of one energy site. The steric functions declared a strong increase in the density of the existing effective uptake receptors throughout the modification stages (GRs (112.1 mg g-1) > EXG (87.7 mg g-1) > 72.5 mg g-1 (GL)). Also, each active site can be filled with 4 U(vi) ions, donating the parallel orientation of these ions and the operation of multi-ionic mechanisms. The energetic functions, either the uptake energy (<13 kJ mol-1) or Gaussian energy (<5 kJ mol-1), validate the retention of U(vi) by physical reactions. These reactions displayed spontaneous properties and exothermic behaviors based on the investigated thermodynamic functions, including entropy, enthalpy, and internal energy. The structures also showed significant recyclability, indicating potential application on a realistic and commercial scale.
Collapse
Affiliation(s)
- Mostafa R Abukhadra
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni Suef City Egypt
- Geology Department, Faculty of Science, Beni-Suef University Egypt
| | - Aya Fadl Allah
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni Suef City Egypt
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef City Egypt
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah Madinah 42351 Saudi Arabia
| | - Noof A Alenazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University Al-kharj 11942 Saudi Arabia
| | - Haifa A Alqhtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University P. O. BOX 84428 Riyadh 11671 Saudi Arabia
| | - May Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University P. O. BOX 84428 Riyadh 11671 Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University Riyadh 11623 Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University Beni-suef 65211 Egypt
| |
Collapse
|
2
|
Ahmed AM, Saad I, Rafea MA, Abukhadra MR. Synergetic and advanced isotherm investigation for the enhancement influence of zeolitization and β-cyclodextrin hybridization on the retention efficiency of U(vi) ions by diatomite. RSC Adv 2024; 14:8752-8768. [PMID: 38495997 PMCID: PMC10938553 DOI: 10.1039/d3ra08709c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/03/2024] [Indexed: 03/19/2024] Open
Abstract
In synergetic investigations, the adsorption effectiveness of diatomite-based zeolitic structure (ZD) as well as its β-cyclodextrin (CD) hybrids (CD/ZD) towards uranium ions (U(vi)) was evaluated to examine the influence of the transformation procedures. The retention behaviors and mechanistic processes have been demonstrated through analyzing the steric and energetic factors employing the modern equilibrium approach (a monolayer model with a single energy level). After the saturation phase, the uptake characteristics of U(vi) were dramatically improved to 297.5 mg g-1 after the CD blending procedure versus ZD (262.3 mg g-1) or 127.8 mg g-1. The steric analysis indicated a notable increase in binding site levels after the zeolitization steps (Nm = 85.7 mg g-1) as well as CD implementation (Nm = 91.2 mg g-1). This finding clarifies the reported improvement in the ability of CD/ZD to effectively retain the U(vi) ions. Furthermore, every single active site of the CD/ZD material has the capacity to adsorb around four ions, which are aligned according to a vertical pattern. The energetic aspects, specifically Gaussian energy (<8 kJ mol-1) along with retention energy (<40 kJ mol-1), validate the regulated influences of the physical mechanistic processes. The physical adsorption of U(vi) seems to depend on various intermolecular forces, such as van der Waals forces, in conjunction with zeolitic ion exchanging pathways (0.6-25 kJ mol-1). The thermodynamic assets have been evaluated to confirm the exothermic together with spontaneous adsorption U(vi) by ZD and its blend with CD (CD/ZD).
Collapse
Affiliation(s)
- Ashour M Ahmed
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Kingdom of Saudi Arabia
| | - Islam Saad
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 65211 Egypt
| | - M Abdel Rafea
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Kingdom of Saudi Arabia
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University Beni Suef City Egypt
- Materials Technologies and Their Applications Lab, Faculty of Science, Beni-Suef University Beni Suef City Egypt
| |
Collapse
|
3
|
Hamed A, Orabi A, Salem H, Ismaiel D, Saad G, Abdelhamid I, Elwahy A, Elsabee M. An effective uranium removal using diversified synthesized cross-linked chitosan bis-aldehyde Schiff base derivatives from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106790-106811. [PMID: 36334198 PMCID: PMC10611627 DOI: 10.1007/s11356-022-23856-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Three new cross-linked chitosan derivatives were yielded through intensification of chitosan with diverse types of bis-aldehydes. The prepared cross-linked chitosan was characterized by FTIR, 1H NMR, XRD, and TGA techniques. TGA indicated an improvement in thermal stability of the cross-linked chitosan compared with pure chitosan. Batch adsorption experiments showed that the three novel cross-linked chitosan bis-aldehyde derivatives possessed good adsorption capacity against U(VI) in the order of BFPA > BFB > BODB (adsorption capacity of the three adsorbents for U(VI) reaches 142, 124, and 114 mg/g respectively) and the adsorption isotherm and kinetic were well described by the Langmuir and the pseudo-second-order kinetic model, respectively. In addition, the prepared cross-linked chitosan bis-aldehyde derivatives were examined as U(VI) catcher from waste solutions.
Collapse
Affiliation(s)
- Amira Hamed
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Ahmed Orabi
- Nuclear Materials Authority, El-Maadi, P.O. Box 530, Cairo, Egypt.
| | - Hend Salem
- Nuclear Materials Authority, El-Maadi, P.O. Box 530, Cairo, Egypt
| | - Doaa Ismaiel
- Nuclear Materials Authority, El-Maadi, P.O. Box 530, Cairo, Egypt
| | - Gamal Saad
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Ismail Abdelhamid
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Ahmed Elwahy
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Maher Elsabee
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| |
Collapse
|
4
|
Alotaibi AM, Ismail AF, Aziman ES. Ultra-effective modified clinoptilolite adsorbent for selective thorium removal from radioactive residue. Sci Rep 2023; 13:9316. [PMID: 37291241 DOI: 10.1038/s41598-023-36487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
This study investigated the efficacy of using phosphate-modified zeolite (PZ) as an adsorbent for removing thorium from aqueous solutions. The effects of various factors such as contact time, adsorbent mass, initial thorium concentration, and pH value of the solution on the removal efficiency were analyzed using the batch technique to obtain optimum adsorption condition. The results revealed that the optimal conditions for thorium adsorption were a contact time of 24 h, 0.03 g of PZ adsorbent, pH 3, and a temperature of 25 °C. Isotherm and kinetics parameters of the thorium adsorption on PZ were also determined, with equilibrium studies showing that the experimental data followed the Langmuir isotherm model. The maximum adsorption capacity (Qo) for thorium was found to be 17.3 mg/g with the Langmuir isotherm coefficient of 0.09 L/mg. Using phosphate anions to modify natural zeolite increased its adsorption capacity. Furthermore, adsorption kinetics studies demonstrated that the adsorption of thorium onto PZ adsorbent fitted well with the pseudo-second-order model. The applicability of the PZ adsorbent in removing thorium from real radioactive waste was also investigated, and nearly complete thorium removal was achieved (> 99%) from the leached solution obtained from cracking and leaching processes of rare earth industrial residue under optimized conditions. This study elucidates the potential of PZ adsorbent for efficient removal of thorium from rare earth residue via adsorption, leading to a reduction in waste volume for ultimate disposition.
Collapse
Affiliation(s)
- Abdulrahman Masoud Alotaibi
- Nuclear Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Department of Physics, Faculty of Applied Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Aznan Fazli Ismail
- Nuclear Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
- Nuclear Technology Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Eli Syafiqah Aziman
- Nuclear Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
5
|
Efficient separation of uranium from aqueous solution using sustainable biomass: an insight of adsorption isotherm and kinetics. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08861-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
6
|
Chakraborty A, Pal A, Saha BB. A Critical Review of the Removal of Radionuclides from Wastewater Employing Activated Carbon as an Adsorbent. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8818. [PMID: 36556624 PMCID: PMC9788631 DOI: 10.3390/ma15248818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Radionuclide-contaminated water is carcinogenic and poses numerous severe health risks and environmental dangers. The activated carbon (AC)-based adsorption technique has great potential for treating radionuclide-contaminated water due to its simple design, high efficiency, wide pH range, quickness, low cost and environmental friendliness. This critical review first provides a brief overview of the concerned radionuclides with their associated health hazards as well as different removal techniques and their efficacy of removing them. Following this overview, this study summarizes the surface characteristics and adsorption capabilities of AC derived from different biomass precursors. It compares the adsorption performance of AC to other adsorbents, such as zeolite, graphene, carbon nano-tubes and metal-organic frameworks. Furthermore, this study highlights the different factors that influence the physical characteristics of AC and adsorption capacity, including contact time, solution pH, initial concentration of radionuclides, the initial dosage of the adsorbent, and adsorption temperature. The theoretical models of adsorption isotherm and kinetics, along with their fitting parameter values for AC/radionuclide pairs, are also reviewed. Finally, the modification procedures of pristine AC, factors determining AC characteristics and the impact of modifying agents on the adsorption ability of AC are elucidated in this study; therefore, further research and development can be promoted for designing a highly efficient and practical adsorption-based radionuclide removal system.
Collapse
Affiliation(s)
- Anik Chakraborty
- Department of Nuclear Engineering, University of Dhaka, Dhaka 1000, Bangladesh
| | - Animesh Pal
- Department of Nuclear Engineering, University of Dhaka, Dhaka 1000, Bangladesh
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Bidyut Baran Saha
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Prusty S, Somu P, Sahoo JK, Panda D, Sahoo SK, Sahoo SK, Lee YR, Jarin T, Sundar LS, Rao KS. Adsorptive sequestration of noxious uranium (VI) from water resources: A comprehensive review. CHEMOSPHERE 2022; 308:136278. [PMID: 36057349 DOI: 10.1016/j.chemosphere.2022.136278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Groundwater is usually utilized as a drinking water asset everywhere. Therefore, groundwater defilement by poisonous radioactive metals such as uranium (VI) is a major concern due to the increase in nuclear power plants as well as their by-products which are released into the watercourses. Waste Uranium (VI) can be regarded as a by-product of the enrichment method used to produce atomic energy, and the hazard associated with this is due to the uranium radioactivity causing toxicity. To manage these confronts, there are so many techniques that have been introduced but among those adsorptions is recognized as a straightforward, successful, and monetary innovation, which has gotten major interest nowadays, despite specific drawbacks regarding operational as well as functional applications. This review summarizes the various adsorbents such as Bio-adsorbent/green materials, metal oxide-based adsorbent, polymer based adsorbent, graphene oxide based adsorbent, and magnetic nanomaterials and discuss their synthesis methods. Furthermore, this paper emphasis on adsorption process by various adsorbents or modified forms under different physicochemical conditions. In addition to this adsorption mechanism of uranium (VI) onto different adsorbent is studied in this article. Finally, from the literature reviewed conclusion have been drawn and also proposed few future research suggestions.
Collapse
Affiliation(s)
- Sourav Prusty
- Department of Chemistry, GIET University, Gunupur, 765022, Rayagada, Odisha, India
| | - Prathap Somu
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea; Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 600124, India
| | - Jitendra Kumar Sahoo
- Department of Chemistry, GIET University, Gunupur, 765022, Rayagada, Odisha, India
| | - Debasish Panda
- Department of Chemistry, GIET University, Gunupur, 765022, Rayagada, Odisha, India
| | - Sunil Kumar Sahoo
- Health Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Shraban Kumar Sahoo
- School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - T Jarin
- Department of Electrical & Electronics Engineering (EEE), Jyothi Engineering College, Thrissur, 679531, India
| | - L Syam Sundar
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Koppula Srinivas Rao
- Department of Computer Science and Engineering, MLR Institute of Technology, Hyderabad, 500043, India.
| |
Collapse
|
8
|
Watanabe T, Guilhen SN, Marumo JT, de Souza RP, de Araujo LG. Uranium biosorption by hydroxyapatite and bone meal: evaluation of process variables through experimental design. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79816-79829. [PMID: 34816347 DOI: 10.1007/s11356-021-17551-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Biosorption has been examined for the treatment of aqueous solutions containing uranium, a radiotoxic pollutant. Nevertheless, the evaluation of the role of process variables by experimental design on the use of hydroxyapatite and bone meal as biosorbents for uranium has not yet been previously addressed. In this study, the effects of adsorbent dosage (M), initial uranium concentrations ([U]0), and solution pH were investigated, using a two-level factorial design and response surface analysis. The experiments were performed in batch, with [U]0 of 100 and 500 mg L-1, pH 3 and 5, and adsorbent/uranium solution ratios of 5 and 15 g L-1. Contact time was fixed at 24 h. Removal rates were higher than 88%, with a maximum of 99% in optimized conditions. [U]0 and M were found to be the most influential variables in U removal in terms of adsorption capacity (q). The experiments revealed that bone meal holds higher adsorption capacity (49.87 mg g-1) and achieved the highest uranium removal (~ 100%) when compared to hydroxyapatite (q = 49.20 mg g-1, removal = 98.5%). The highest value of q for both biomaterials was obtained for [U]0 = 500 mg L-1, pH 3, and M = 5 g L-1. Concerning the removal percentage, bone meal achieved the best performance for [U]0 = 500 mg L-1, pH 3, and M = 15 g L-1. Further experiments were made with real radioactive waste, resulting in a high uranium adsorption capacity for both materials, with 22.11 mg g-1 for hydroxyapatite and 22.08 mg g-1 for bone meal, achieving uranium removal efficiencies higher than 99%.
Collapse
Affiliation(s)
- Tamires Watanabe
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, São Paulo, 05508-000, Brazil
| | - Sabine Neusatz Guilhen
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, São Paulo, 05508-000, Brazil
| | - Júlio Takehiro Marumo
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, São Paulo, 05508-000, Brazil
| | - Rodrigo Papai de Souza
- Instituto de Pesquisas Tecnológicas do Estado de São Paulo (IPT), Av. Prof. Almeida Prado, SP, São Paulo, 532 - 05508-901, Brazil
| | - Leandro Goulart de Araujo
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, São Paulo, 05508-000, Brazil.
| |
Collapse
|
9
|
Cheang T, Zhou H, Lin W, Zheng J, Yu L, Zhang Y. Construction of an egg-like DTAB/SiO 2 composite for the enhanced removal of uranium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63294-63303. [PMID: 35449334 DOI: 10.1007/s11356-022-20260-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
For the past few years, the environmental safety problems of radioactive nuclides caused wide public concern. In this work, the dodecyl trimethyl ammonium bromide-modified silicon dioxide composite (DTAB/SiO2) was synthesized for the elimination of uranium. The dodecyl trimethyl ammonium bromide can decorate the surface of the silicon dioxide and change its surface topography, which can offer more active sites and functional groups for the combination of U(VI). The removal capacity of U(VI) on DTAB/SiO2 reached 78.1 mg/g, which was greater than that of the silicon dioxide nanopowder. In the adsorption process, the surface oxygen-containing functional groups formed surface complexation with uranium. The results may provide helpful content to eliminate U(VI) and expand the application of surfactant in radioactive nuclide cleanup.
Collapse
Affiliation(s)
- Tuckyun Cheang
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutics University, Guangdong, 510080, China
| | - Hongyan Zhou
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, 510080, China
| | - Weihao Lin
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, 510080, China
| | - JiaJun Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutics University, Guangdong, 510080, China
| | - Liang Yu
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, 510080, China
| | - Yongcheng Zhang
- Department of Breast Care Surgery, the First Affiliated Hospital of Guangdong Pharmaceutics University, Guangdong, 510080, China.
| |
Collapse
|
10
|
Tiwari AN, Tapadia K, Thakur C, Sharma A. A sustainable approach to Gilloy-shoot extract-mediated synthesis of magnetite nanoparticles: isotherm and kinetic study of U(VI) removal. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08441-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Jiang Q, Wang Y, Cheng J, Pan Y, Ren J, Leng Y, Liu Y, Bao C, Wang L, Tuo X. Sorption of cesium on surrounding granite of Chinese low- and medium-level nuclear waste repository in the groundwater environment. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08280-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Tochaikul G, Phattanasub A, Khemkham P, Saengthamthawee K, Danthanavat N, Moonkum N. Radioactive waste treatment technology: a review. KERNTECHNIK 2022. [DOI: 10.1515/kern-2021-1029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Radioactive waste is generated from activities that utilize nuclear materials such as nuclear medicine or power plants. Depending on their half-life, they emit radiation continuously, ranging from seconds to millions of years. Exposure to ionizing radiation can cause serious harm to humans and the environment. Therefore, special attention is paid to the management of radioactive waste in order to deal with its large quantity and dangerous levels. Current treatment technologies are still being developed to improve efficiency in reducing the hazard level and waste volume, to minimize the impact on living organisms. Thus, the aim of this study was to provide an overview of the global radioactive waste treatment technologies that have been released in 2019–2021.
Collapse
Affiliation(s)
- Gunjanaporn Tochaikul
- Faculty of Radiological Technology, Rangsit University , 52/347 Lak Hok, Mueang Pathum Thani District , Pathum Thani 12000 , Thailand
| | - Archara Phattanasub
- Head of Radioactive Waste Technology and Development Section, Thailand Institute of Nuclear Technology (Public Organization) , Bangkok , Thailand
| | - Piyatida Khemkham
- Faculty of Radiological Technology, Rangsit University , 52/347 Lak Hok, Mueang Pathum Thani District , Pathum Thani 12000 , Thailand
| | - Kanjanaporn Saengthamthawee
- Faculty of Radiological Technology, Rangsit University , 52/347 Lak Hok, Mueang Pathum Thani District , Pathum Thani 12000 , Thailand
| | - Nuttapong Danthanavat
- Faculty of Radiological Technology, Rangsit University , 52/347 Lak Hok, Mueang Pathum Thani District , Pathum Thani 12000 , Thailand
| | - Nutthapong Moonkum
- Faculty of Radiological Technology, Rangsit University , 52/347 Lak Hok, Mueang Pathum Thani District , Pathum Thani 12000 , Thailand
| |
Collapse
|
13
|
Kashyap K, Khan F, Verma DK, Agrawal S. Effective removal of uranium from aqueous solution by using cerium oxide nanoparticles derived from citrus limon peel extract. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-021-08138-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Ratnitsai V, Wongjaikham W, Wongsawaeng D, Kohmun K. Highly promising recycled low-density polyethylene sheet adsorbents for uranium recovery from seawater. J NUCL SCI TECHNOL 2021. [DOI: 10.1080/00223131.2021.1996296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Vareeporn Ratnitsai
- Department of Science and Mathematics, Faculty of Science and Technology, Rajamangala University of Technology Tawan-ok, Chonburi, Thailand
| | - Wijittra Wongjaikham
- Research Unit on Plasma Technology for High-Performance Materials Development, Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Doonyapong Wongsawaeng
- Research Unit on Plasma Technology for High-Performance Materials Development, Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Kanokporn Kohmun
- Department of Science and Mathematics, Faculty of Science and Technology, Rajamangala University of Technology Tawan-ok, Chonburi, Thailand
| |
Collapse
|
15
|
Brown AT, Balkus KJ. Critical Rare Earth Element Recovery from Coal Ash Using Microsphere Flower Carbon. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48492-48499. [PMID: 34613685 DOI: 10.1021/acsami.1c09298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
There is a need to develop new solid-phase adsorbents to extract elements from the coal ash. High surface area carbon adsorbents are remarkably good at adsorption of rare earth elements and have good stability in acidic media. A high surface area (1162 m2/g), surface-oxidized microsphere flower carbon (MFC-O) has been prepared for the extraction of rare earth elements as well as thorium and uranium. MFC-O exhibits outstanding distribution coefficients up to kd = 1.2 × 106 for thorium, uranium, and rare earth elements. It was found that thorium and uranium can be separated from the rare earth elements by adjusting the pH. The maximum extraction capacity (71.3 mg/g) was performed up to 88 ppm with 18 competitive elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, and U), and element recovery was >85%. A coal ash sample (NIST SRM 1633c) with a known concentration of elements (Na, Ca, Al, Si, Fe, Sc, La, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Lu, Th, and U) was leeched resulting in 45% Ce recovery. The leeched solution from NIST 1633c was then mixed with MFC-O for Ce extraction of 74%, Na (17%), Ca (13%), Al (24%), Si (41%), and Fe (17%). The binding properties of MFC-O show that it is an attractive material for the selective extraction of rare earth elements from coal ash.
Collapse
Affiliation(s)
- Alexander T Brown
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Kenneth J Balkus
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
16
|
Mahmoud MA. Sorption of U(VI) ions from aqueous solution by eggplant leaves: Isotherm, kinetics and thermodynamics studies. PROGRESS IN NUCLEAR ENERGY 2021. [DOI: 10.1016/j.pnucene.2021.103829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Ahmed M, Hameed B, Hummadi E. Insight into the chemically modified crop straw adsorbents for the enhanced removal of water contaminants: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115616] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Sahu M, Sar SK. Mimusops Elengi Leaves as Bioadsorbent for Removal of Uranyl Ion from Aqueous Solution. RADIOCHEMISTRY 2021. [DOI: 10.1134/s1066362221020077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Mahmoud MA. Preparation of magnetic nanomaterial for U (VI) uptake from the aqueous solution. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Pandey P, Pandey M, Pandey PK. Uranium contamination removal from water by an orchid (Vanda tessellata) based biosorbent. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07638-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
New adsorptive composite membrane from recycled acrylic fibers and Sargassum dentifolium marine algae for uranium and thorium removal from liquid waste solution. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07403-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Salam MA, Abukhadra MR, Mostafa M. Effective decontamination of As(V), Hg(II), and U(VI) toxic ions from water using novel muscovite/zeolite aluminosilicate composite: adsorption behavior and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13247-13260. [PMID: 32020450 DOI: 10.1007/s11356-020-07945-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/29/2020] [Indexed: 05/22/2023]
Abstract
Muscovite/phillipsitic zeolite was introduced as a novel inorganic composite of stunning adsorption properties. The composite was investigated in the uptake reactions of Hg(II), As(V), and U(VI) as highly toxic water contaminants considering different adsorption factors. The adsorption properties of muscovite/phillipsitic zeolite are highly dependent on the pH values and the best decontamination percentages can be obtained at pH 4, pH 5, and pH 5 for Hg(II), As(V), and U(VI), respectively. The kinetic studies demonstrated adsorption equilibrium for Hg(II), As(V), and U(VI) after 360 min, 300 min, and 360 min, respectively. The equilibrium modeling suggested monolayer uptake for all the metals and represented mainly by the Langmuir model considering both the values of determination coefficient and chi-squared (χ2). The estimated maximum capacities are 117 mg/g (Hg(II)), 122.5 mg/g (As(V)), and 138.5 mg/g (U(VI)) which are higher values than several studied adsorbents. The Dubinin-Radushkevich adsorption energies of Hg(II) (19.4 kJ/mol), As(V) (25.6 kJ/mol), and U(VI) (26.47 kJ/mol) signify chemical adsorption mechanisms and close to the obtained values for the ion-exchange process. Additionally, the composite is of high reusability properties and was applied effectively for five decontamination cycles. Graphical abstract.
Collapse
Affiliation(s)
- Mohamed Abdel Salam
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt.
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt.
| | - Merna Mostafa
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| |
Collapse
|
23
|
Chandra C, Khan F. Nano-scale zerovalent copper: green synthesis, characterization and efficient removal of uranium. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07080-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Solvent extraction of uranium and vanadium from carbonate leach solutions of ferruginous siltstone using cetylpyridinium carbonate in kerosene. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01073-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|