1
|
Fu Y, Wang C, Zhang L, Ji D, Xiang A, Qi J, Zhao R, Wu L, Jin S, Zhang Q. The effectiveness of theta burst stimulation for motor recovery after stroke: a systematic review. Eur J Med Res 2024; 29:568. [PMID: 39609900 PMCID: PMC11605871 DOI: 10.1186/s40001-024-02170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Stroke is the second leading cause of death and the third leading cause of disability worldwide. Motor dysfunction is a common sequela, which seriously affects the lives of patients. Theta burst stimulation (TBS) is a new transcranial magnetic therapy for improving motor dysfunction after stroke. However, there remains a lack of studies on the mechanism, theoretical model, and effectiveness of TBS in improving motor dysfunction following stroke. OBJECTIVE This paper provides a comprehensive overview and assessment of the current impact of TBS on motor rehabilitation following stroke and analyzes potential factors contributing to treatment effect disparities. The aim is to offer recommendations for further refining the TBS treatment approach in subsequent clinical studies while also furnishing evidence for devising tailored rehabilitation plans for stroke patients. METHODS This study was conducted following PRISMA guidelines. PubMed, Embase, Web of Science, and the Cochrane Library were searched systematically from the establishment of the database to February 2024. Relevant studies using TBS to treat patients with motor dysfunction after stroke will be included. Data on study characteristics, interventions, outcome measures, and primary outcomes were extracted. The Modified Downs and Black Checklist was used to assess the potential bias of the included studies, and a narrative synthesis of the key findings was finally conducted. RESULTS The specific mechanism of TBS in improving motor dysfunction after stroke has not been fully elucidated, but it is generally believed that TBS can improve the functional prognosis of patients by regulating motor cortical excitability, inducing neural network reorganization, and regulating cerebral circulation metabolism. Currently, most relevant clinical studies are based on the interhemispheric inhibition model (IHI), the vicariation model, and the bimodal balance-recovery model. Many studies have verified the effectiveness of TBS in improving the motor function of stroke patients, but the therapeutic effect of some studies is controversial. CONCLUSION Our results show that TBS has a good effect on improving motor function in stroke patients, but more large-scale, high-quality, multicenter studies are still necessary in the future to further clarify the mechanism of TBS and explore the optimal TBS treatment.
Collapse
Affiliation(s)
- Yanxin Fu
- Beijing Xiaotangshan Hospital, Beijing, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Chengshuo Wang
- Beijing Xiaotangshan Hospital, Beijing, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Linli Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Dongqi Ji
- Beijing Xiaotangshan Hospital, Beijing, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Aomeng Xiang
- Beijing Xiaotangshan Hospital, Beijing, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Jingman Qi
- Beijing Xiaotangshan Hospital, Beijing, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Ruoxuan Zhao
- Beijing Xiaotangshan Hospital, Beijing, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| | - Liang Wu
- Beijing Xiaotangshan Hospital, Beijing, China.
| | - Shasha Jin
- Beijing Xiaotangshan Hospital, Beijing, China.
| | - Qin Zhang
- Beijing Xiaotangshan Hospital, Beijing, China.
| |
Collapse
|
2
|
Schuch CP, Jovanovic LI, Balbinot G. Corticospinal Tract Sparing in Cervical Spinal Cord Injury. J Clin Med 2024; 13:6489. [PMID: 39518628 PMCID: PMC11545869 DOI: 10.3390/jcm13216489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Disruptions in the brain's connections to the hands resulting from a cervical spinal cord injury (cSCI) can lead to severe and persistent functional impairments. The integrity of these connections is an important predictor of upper extremity recovery in stroke and may similarly act as a biomarker in cSCI. In this perspective article, we review recent findings from a large cohort of individuals with cSCI, demonstrating the predictive value of corticospinal tract (CST) integrity in cSCI-CST sparing. This research underscores that, akin to stroke, the integrity of brain-to-hand connections is crucial for predicting upper extremity recovery following cSCI. We address the limitations of commonly used metrics, such as sacral sparing and the concept of central cord syndrome. Furthermore, we offer insights on emerging metrics, such as tissue bridges, emphasizing their potential in assessing the integrity of brain connections to the spinal cord.
Collapse
Affiliation(s)
| | | | - Gustavo Balbinot
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Movement Neurorehabilitation and Neurorepair Laboratory, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, V5A 1S6 BC, Canada
| |
Collapse
|
3
|
Zhang JJ, Sui Y, Sack AT, Bai Z, Kwong PWH, Sanchez Vidana DI, Xiong L, Fong KNK. Theta burst stimulation for enhancing upper extremity motor functions after stroke: a systematic review of clinical and mechanistic evidence. Rev Neurosci 2024; 35:679-695. [PMID: 38671584 DOI: 10.1515/revneuro-2024-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
This systematic review aimed to evaluate the effects of different theta burst stimulation (TBS) protocols on improving upper extremity motor functions in patients with stroke, their associated modulators of efficacy, and the underlying neural mechanisms. We conducted a meta-analytic review of 29 controlled trials published from January 1, 2000, to August 29, 2023, which investigated the effects of TBS on upper extremity motor, neurophysiological, and neuroimaging outcomes in poststroke patients. TBS significantly improved upper extremity motor impairment (Hedge's g = 0.646, p = 0.003) and functional activity (Hedge's g = 0.500, p < 0.001) compared to controls. Meta-regression revealed a significant relationship between the percentage of patients with subcortical stroke and the effect sizes of motor impairment (p = 0.015) and functional activity (p = 0.018). Subgroup analysis revealed a significant difference in the improvement of upper extremity motor impairment between studies using 600-pulse and 1200-pulse TBS (p = 0.002). Neurophysiological studies have consistently found that intermittent TBS increases ipsilesional corticomotor excitability. However, evidence to support the regional effects of continuous TBS, as well as the remote and network effects of TBS, is still mixed and relatively insufficient. In conclusion, TBS is effective in enhancing poststroke upper extremity motor function. Patients with preserved cortices may respond better to TBS. Novel TBS protocols with a higher dose may lead to superior efficacy compared with the conventional 600-pulse protocol. The mechanisms of poststroke recovery facilitated by TBS can be primarily attributed to the modulation of corticomotor excitability and is possibly caused by the recruitment of corticomotor networks connected to the ipsilesional motor cortex.
Collapse
Affiliation(s)
- Jack Jiaqi Zhang
- Department of Rehabilitation Sciences, 26680 The Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Youxin Sui
- Department of Rehabilitation Sciences, 26680 The Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Zhongfei Bai
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Patrick W H Kwong
- Department of Rehabilitation Sciences, 26680 The Hong Kong Polytechnic University , Hong Kong SAR, China
| | | | - Li Xiong
- Clinical Trials Centre, 26469 The Eighth Affiliated Hospital of Sun Yat-Sen University , Shenzhen, China
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, 26680 The Hong Kong Polytechnic University , Hong Kong SAR, China
| |
Collapse
|
4
|
Włodarczyk L, Cichon N, Saluk-Bijak J, Bijak M, Majos A, Miller E. Neuroimaging Techniques as Potential Tools for Assessment of Angiogenesis and Neuroplasticity Processes after Stroke and Their Clinical Implications for Rehabilitation and Stroke Recovery Prognosis. J Clin Med 2022; 11:jcm11092473. [PMID: 35566599 PMCID: PMC9103133 DOI: 10.3390/jcm11092473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Stroke as the most frequent cause of disability is a challenge for the healthcare system as well as an important socio-economic issue. Therefore, there are currently a lot of studies dedicated to stroke recovery. Stroke recovery processes include angiogenesis and neuroplasticity and advances in neuroimaging techniques may provide indirect description of this action and become quantifiable indicators of these processes as well as responses to the therapeutical interventions. This means that neuroimaging and neurophysiological methods can be used as biomarkers—to make a prognosis of the course of stroke recovery and define patients with great potential of improvement after treatment. This approach is most likely to lead to novel rehabilitation strategies based on categorizing individuals for personalized treatment. In this review article, we introduce neuroimaging techniques dedicated to stroke recovery analysis with reference to angiogenesis and neuroplasticity processes. The most beneficial for personalized rehabilitation are multimodal panels of stroke recovery biomarkers, including neuroimaging and neurophysiological, genetic-molecular and clinical scales.
Collapse
Affiliation(s)
- Lidia Włodarczyk
- Department of Neurological Rehabilitation, Medical University of Lodz, Poland Milionowa 14, 93-113 Lodz, Poland
- Correspondence: (L.W.); (E.M.); Tel.: +48-(0)4-2666-77461 (E.M.); Fax: +48-(0)4-2676-1785 (E.M.)
| | - Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, 141/143, 90-236 Lodz, Poland; (N.C.); (M.B.)
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, 141/143, 90-236 Lodz, Poland;
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, 141/143, 90-236 Lodz, Poland; (N.C.); (M.B.)
| | - Agata Majos
- Department of Radiological and Isotopic Diagnosis and Therapy, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Poland Milionowa 14, 93-113 Lodz, Poland
- Correspondence: (L.W.); (E.M.); Tel.: +48-(0)4-2666-77461 (E.M.); Fax: +48-(0)4-2676-1785 (E.M.)
| |
Collapse
|
5
|
Schuch CP, Lam TK, Levin MF, Cramer SC, Swartz RH, Thiel A, Chen JL. A comparison of lesion-overlap approaches to quantify corticospinal tract involvement in chronic stroke. J Neurosci Methods 2022; 376:109612. [PMID: 35487314 DOI: 10.1016/j.jneumeth.2022.109612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Clarissa Pedrini Schuch
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, M5S 2W6, Canada
| | - Timothy K Lam
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Mindy F Levin
- School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, H3G 1Y5, Canada; Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Laval, QC, H7V 1R2, Canada
| | - Steven C Cramer
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles; and California Rehabilitation Institute; Los Angeles, CA, 90095-1769, United States of America
| | - Richard H Swartz
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada; Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada
| | - Alexander Thiel
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Joyce L Chen
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, M5S 2W6, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
6
|
Argaman Y, Granovsky Y, Sprecher E, Sinai A, Yarnitsky D, Weissman-Fogel I. Clinical Effects of Repetitive Transcranial Magnetic Stimulation of the Motor Cortex Are Associated With Changes in Resting-State Functional Connectivity in Patients With Fibromyalgia Syndrome. THE JOURNAL OF PAIN 2022; 23:595-615. [PMID: 34785365 DOI: 10.1016/j.jpain.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022]
Abstract
In this double-blinded, sham-controlled, counterbalanced, and crossover study, we investigated the potential neuroplasticity underlying pain relief and daily function improvements following repetitive transcranial magnetic stimulation of the motor cortex (M1-rTMS) in fibromyalgia syndrome (FMS) patients. Specifically, we used magnetic resonance imaging (MRI) to examine changes in brain structural and resting-state functional connectivity (rsFC) that correlated with improvements in FMS symptomology following M1-rTMS. Twenty-seven women with FMS underwent real and sham treatment series, each consisting of 10 daily treatments of 10Hz M1-rTMS over 2 weeks, with a washout period in between. Before and after each series, participants underwent anatomical and resting-state functional MRI scans and questionnaire assessments of FMS-related clinical pain and functional and psychological burdens. The expected reductions in FMS-related symptomology following M1-rTMS occurred with the real treatment only and correlated with rsFC changes in brain areas associated with pain processing and modulation. Specifically, between the ventromedial prefrontal cortex and the M1 (t = -5.54, corrected P = .002), the amygdala and the posterior insula (t = 5.81, corrected P = .044), and the anterior and posterior insula (t = 6.01, corrected P = .029). Neither treatment significantly changed brain structure. Therefore, we provide the first evidence of an association between the acute clinical effects of M1-rTMS in FMS and functional alterations of brain areas that have a significant role in the experience of chronic pain. Structural changes could potentially occur over a more extended treatment period. PERSPECTIVE: We show that the neurophysiological mechanism of the improvement in fibromyalgia symptoms following active, but not sham, rTMS applied to M1 involves changes in resting-state functional connectivity in sensory, affective and cognitive pain processing brain areas, thus substantiating the essence of fibromyalgia syndrome as a treatable brain-based disorder.
Collapse
Affiliation(s)
- Yuval Argaman
- Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yelena Granovsky
- Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Elliot Sprecher
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Alon Sinai
- Department of Neurosurgery, Rambam Health Care Campus, Haifa, Israel
| | - David Yarnitsky
- Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Irit Weissman-Fogel
- Department of Physical Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
7
|
Gregor S, Saumur TM, Crosby LD, Powers J, Patterson KK. Study Paradigms and Principles Investigated in Motor Learning Research After Stroke: A Scoping Review. Arch Rehabil Res Clin Transl 2021; 3:100111. [PMID: 34179749 PMCID: PMC8211998 DOI: 10.1016/j.arrct.2021.100111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To (1) characterize study paradigms used to investigate motor learning (ML) poststroke and (2) summarize the effects of different ML principles in promoting skill acquisition and retention. Our secondary objective is to evaluate the clinical utility of ML principles on stroke rehabilitation. DATA SOURCES Medline, Excerpta Medica Database, Allied and Complementary Medicine, Cumulative Index to Nursing and Allied Health Literature, and Cochrane Central Register of Controlled Trials were searched from inception on October 24, 2018 and repeated on June 23, 2020. Scopus was searched on January 24, 2019 and July 22, 2020 to identify additional studies. STUDY SELECTION Our search included keywords and concepts to represent stroke and "motor learning. An iterative process was used to generate study selection criteria. Three authors independently completed title, abstract, and full-text screening. DATA EXTRACTION Three reviewers independently completed data extraction. DATA SYNTHESIS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension guidelines for scoping reviews were used to guide our synthesis. Thirty-nine studies were included. Study designs were heterogeneous, including variability in tasks practiced, acquisition parameters, and retention intervals. ML principles investigated included practice complexity, feedback, motor imagery, mental practice, action observation, implicit and explicit information, aerobic exercise, and neurostimulation. An additional 2 patient-related factors that influence ML were included: stroke characteristics and sleep. Practice complexity, feedback, and mental practice/action observation most consistently promoted ML, while provision of explicit information and more severe strokes were detrimental to ML. Other factors (ie, sleep, practice structure, aerobic exercise, neurostimulation) had a less clear influence on learning. CONCLUSIONS Improved consistency of reporting in ML studies is needed to improve study comparability and facilitate meta-analyses to better understand the influence of ML principles on learning poststroke. Knowledge of ML principles and patient-related factors that influence ML, with clinical judgment can guide neurologic rehabilitation delivery to improve patient motor outcomes.
Collapse
Affiliation(s)
- Sarah Gregor
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Tyler M. Saumur
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Lucas D. Crosby
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Jessica Powers
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Kara K. Patterson
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Mattos DJS, Rutlin J, Hong X, Zinn K, Shimony JS, Carter AR. White matter integrity of contralesional and transcallosal tracts may predict response to upper limb task-specific training in chronic stroke. NEUROIMAGE-CLINICAL 2021; 31:102710. [PMID: 34126348 PMCID: PMC8209270 DOI: 10.1016/j.nicl.2021.102710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/19/2022]
Abstract
Increase in upper limb function post task specific training in chronic stroke. Motor improvements were not accompanied by changes in white matter integrity. Integrity in contralesional fibers predicted larger motor recovery in Responders. Non-responders had more severe damage of transcallosal fibers than Responders.
Objective To investigate white matter (WM) plasticity induced by intensive upper limb (UL) task specific training (TST) in chronic stroke. Methods Diffusion tensor imaging data and UL function measured by the Action Research Arm Test (ARAT) were collected in 30 individuals with chronic stroke prior to and after intensive TST. ANOVAs tested the effects of training on the entire sample and on the Responders [ΔARAT ≥ 5.8, N = 13] and Non-Responders [ΔARAT < 5.8, N = 17] groups. Baseline fractional anisotropy (FA) values were correlated with ARATpost TST controlling for baseline ARAT and age to identify voxels predictive of response to TST. Results. While ARAT scores increased following training (p < 0.0001), FA changes within major WM tracts were not significant at p < 0.05. In the Responder group, larger baseline FA of both contralesional (CL) and transcallosal tracts predicted larger ARAT scores post-TST. Subcortical lesions and more severe damage to transcallosal tracts were more pronounced in the Non-Responder than in the Responder group. Conclusions The motor improvements post-TST in the Responder group may reflect the engagement of interhemispheric processes not available to the Non-Responder group. Future studies should clarify differences in the role of CL and transcallosal pathways as biomarkers of recovery in response to training for individuals with cortical and subcortical stroke. This knowledge may help to identify sources of heterogeneity in stroke recovery, which is necessary for the development of customized rehabilitation interventions.
Collapse
Affiliation(s)
- Daniela J S Mattos
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Jerrel Rutlin
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Xin Hong
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Kristina Zinn
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Alexandre R Carter
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110 USA.
| |
Collapse
|